

Modulhandbuch Erweiterungsfach Informatik (Master of Education (M.Ed.))

SPO 2018 Sommersemester 2024 Stand 11.04.2024

KIT-FAKULTÄT FÜR INFORMATIK

Inhaltsverzeichnis

1.	Studienplan - Einführung	4
	1.1. Modularisierung der Informatik-Studiengänge	
	1.2. Versionierung von Modulen	
	1.3. An-/Abmeldung und Wiederholung von Prüfungen	
	1.4. Studienberatung	5
2.	Studienplan – Struktur des Erweiterungsfaches Master Informatik	6
	2.1. Zusatzleistungen	6
3.	Aufbau des Studiengangs	7
•	3.1. Wissenschaftliches Fach Informatik	
1	Module	
→.	4.1. Access Control Systems: Models and Technology - M-INFO-106303	
	4.2. Algorithmen I - M-INFO-100030	
	4.3. Algorithmen II - M-INFO-101173	
	4.4. Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme - M-INFO-105151	
	4.5. Basispraktikum TI: Hardwarenaher Systementwurf - M-INFO-101219	
	4.6. Betriebssysteme - M-INFO-101177	
	4.7. Computergrafik - M-INFO-100856	
	4.8. Datenbanksysteme - M-INFO-104921	
	4.9. Datenschutz von Anonymisierung bis Zugriffskontrolle - M-INFO-104045	
	4.10. Digitale Barrierefreiheit und Assistive Technologien - M-INFO-105882	
	4.11. Digitaltechnik und Entwurfsverfahren - M-INFO-102978	
	4.12. Echtzeitsysteme - M-INFO-100803	
	4.13. Einführung in Rechnernetze - M-INFO-103455	25
	4.14. Fachdidaktik II - M-INFO-103156	26
	4.15. Fachdidaktik III - M-INFO-104717	27
	4.16. Fachdidaktik Informatik I - M-INFO-103133	28
	4.17. Formale Systeme - M-INFO-100799	29
	4.18. Fortgeschrittene Künstliche Intelligenz - M-INFO-106299	
	4.19. Grundbegriffe der Informatik - M-INFO-101170	
	4.20. Grundlagen der Künstlichen Intelligenz - M-INFO-106014	
	4.21. Heterogene parallele Rechensysteme - M-INFO-100822	
	4.22. Informationssicherheit - M-INFO-106015	
	4.23. Internet of Everything - M-INFO-100800	
	4.24. IT-Sicherheit - M-INFO-106315	
	4.25. Mensch-Maschine-Interaktion - M-INFO-100729	
	4.26. Mikroprozessoren I - M-INFO-101183	
	4.27. Modul Masterarbeit - Informatik - M-INFO-104807	
	4.28. Programmieren - M-INFO-101174	
	4.29. Proseminar - M-INFO-101181	
	4.30. Rechnerorganisation - M-INFO-103179	
	4.31. Rechnerstrukturen - M-INFO-100818	
	4.32. Robotik I - Einführung in die Robotik - M-INFO-100893	
	4.33. Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte - M-INFO-102374	
	4.34. Seminar: Digitale Barrierefreiheit und Assistive Technologien - M-INFO-105884	
	4.35. Softwaretechnik I - M-INFO-101175	
	4.36. Softwaretechnik II - M-INFO-100833	
	4.37. Teamprojekt - M-INFO-105153	
	4.38. Telematik - M-INFO-100801	
_	·	
5.	Teilleistungen	
	5.1. Access Control Systems: Models and Technology - T-INFO-112775	
	5.2. Algorithmen I - T-INFO-100001	
	5.3. Algorithmen II - T-INFO-1020205.4. Ausgewählte Themen - T-INFO-110417	
	5.4. Ausgewanite Themen - T-INFO-110417 5.5. Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung - T-INFO-105983	
	5.5. Basispraktikum Ti: Hardwarenaher Systementwurf - T-INFO-102011	
	5.6. Basispraktikum 11: Hardwarenaner Systementwuri - 1-INFO-102011	
	5.8. Computergrafik - T-INFO-101393	
	5.9. Datenbanksysteme - T-INFO-101497	
	0.0. Batoribanitayatorno - 1-1141 O-101701	1 0

5.10.	Datenschutz von Anonymisierung bis Zugriffskontrolle - T-INFO-108377	71
5.11.	Digitale Barrierefreiheit und Assistive Technologien - T-INFO-111830	72
5.12.	. Digitaltechnik und Entwurfsverfahren - T-INFO-103469	73
5.13.	. Echtzeitsysteme - T-INFO-101340	74
5.14.	Einführung in Rechnernetze - T-INFO-102015	75
5.15.	Fachdidaktik II - T-INFO-106280	76
5.16.	Fachdidaktik III - T-INFO-109614	77
5.17.	Fachdidaktik Informatik I - T-INFO-106234	78
5.18.	. Formale Systeme - T-INFO-101336	79
5.19.	Fortgeschrittene Künstliche Intelligenz - T-INFO-112768	80
5.20.	. Funktionale Programmierung - T-INFO-109126	81
5.21.	. Grundbegriffe der Informatik - T-INFO-101964	82
5.22.	. Grundbegriffe der Informatik Übungsschein - T-INFO-101965	83
5.23.	. Grundlagen der Künstlichen Intelligenz - T-INFO-112194	84
5.24.	. Heterogene parallele Rechensysteme - T-INFO-101359	85
5.25.	Informationssicherheit - T-INFO-112195	86
5.26.	. Internet of Everything - T-INFO-101337	87
	. IT-Sicherheit - T-INFO-112818	
5.28.	. Masterarbeit - Informatik - T-INFO-109822	89
5.29.	. Mensch-Maschine-Interaktion - T-INFO-101266	90
5.30.	Mikroprozessoren I - T-INFO-101972	91
5.31.	. Programmieren - T-INFO-101531	92
5.32.	Programmieren Übungsschein - T-INFO-101967	93
	. Proseminar - T-INFO-101971	
5.34.	Rechnerorganisation - T-INFO-103531	97
5.35.	Rechnerstrukturen - T-INFO-101355	98
5.36.	. Robotik I - Einführung in die Robotik - T-INFO-108014	99
5.37.	. Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte - T-INFO-104742	100
5.38.	. Seminar: Digitale Barrierefreiheit und Assistive Technologien - T-INFO-111832	101
5.39.	Softwaretechnik I - T-INFO-101968	102
5.40.	. Softwaretechnik I Übungsschein - T-INFO-101995	103
5.41.	Softwaretechnik II - T-INFO-101370	104
5.42.	. Teamprojekt - T-INFO-110418	105
5.43.	. Telematik - T-INFO-101338	106
5.44.	. Theoretische Grundlagen der Informatik - T-INFO-103235	107
5.45.	. Übungen zu Computergrafik - T-INFO-104313	108
5 46	Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257	109

1 Studienplan - Einführung

Der Studienplan definiert über die abstrakten Regelungen der Prüfungsordnung hinausgehende Details des Faches Informatik im Lehramtsstudiengang am Karlsruher Institut für Technologie (KIT). Um Studienanfängerinnen und -anfänger wie auch bereits Studierenden die Studienplanung zu erleichtern, dient der Studienplan als Empfehlung, um das Studium optimal zu strukturieren. So können u.a. persönliche Fähigkeiten der Studierenden in Abhängigkeit der gewählten Fächer und des Begleitstudiums von Anfang an berücksichtigt werden und Pflichtveranstaltungen, abgestimmt auf deren Turnus (WS/SS), in den individuellen Studienplan von Beginn an aufgenommen werden.

1.1 Modularisierung der Informatik-Studiengänge

Wesentliche Merkmale des neuen Systems im Zuge des Bologna-Prozesses ergeben sich in der modularisierten Struktur des Studiengangs. So können mehrere Lehrveranstaltungen zu einem Modul gebündelt werden. Ein Modul kann allerdings auch aus nur einer Lehrveranstaltung bestehen.

Um die Transparenz bezüglich der durch den Studierenden erbrachten Leistung zu gewährleisten, werden Studien- und Prüfungsleistungen mit Leistungspunkten (LP), den so genannten ECTS-Punkten, bewertet. Diese sind im Modulhandbuch einzelnen Teilleistungen sowie Modulen zugeordnet und weisen durch ihre Höhe einerseits auf die Gewichtung einer Teilleistung in einem Modul und andererseits auf den mit der Veranstaltung verbundenen Arbeitsaufwand hin. Dabei entspricht ein Leistungspunkt einem Aufwand von ca. 30 Arbeitsstunden für einen durchschnittlichen Studierenden.

Werden durch die belegten Studien- und Prüfungsleistungen in einem Modul mehr LP als dem Modul zugeordnet sind erreicht, so werden die überschüssigen LP auf die Modulgröße abgeschnitten. Die Note des Moduls errechnet sich unter Berücksichtigung aller im Modul erbrachten LP. Auf Fachebene werden jedoch die überschüssigen LP nicht berücksichtigt. Weitere Details zur Berechnung der Abschlussnote werden auf der Fakultätswebseite (https://www.informatik.kit.edu/faq-wiki/doku.php) veröffentlicht.

In den Modulen wird durch diverse Erfolgskontrollen am Ende der Veranstaltung/-en überprüft, ob der Lerninhalt beherrscht wird. Diese Prüfungen können benotet (Prüfungsleistungen) in schriftlicher oder mündlicher Form, wie auch als Prüfungsleistung anderer Art oder unbenotet (Studienleistungen) stattfinden (nähere Erläuterungen hierzu befinden sich in der Studien- und Prüfungsordnung (SPO) § 4). In jedem Modul werden Teilleistungen definiert. Diese sind abstrakte Beschreibungen der Erfolgskontrolle (Prüfungs- oder Studienleistungen). Die Lehrveranstaltungen, die im Modul geprüft werden, werden mit einer oder mehreren Teilleistungen verknüpft. Beispielsweise sind im Modul Grundlagen der Informatik zwei Teilleistungen vorgesehen: Eine Teilleistung modelliert eine Studienleistung (unbenotete Erfolgskontrolle), die das Bestehen des Übungsscheins überprüft. Die zweite Teilleistung ist benotet und modelliert die schriftliche Prüfungsleistung. Jede Teilleistung ist mit der zugehörigen Lehrveranstaltung (Übung bzw. Vorlesung) verknüpft. Im Falle des Moduls Programmieren werden beide Teilleistungen (Übungsschein und Prüfungsleistung) mit der Vorlesung verknüpft.

In einigen Pflichtmodule werden Teilleistungen verankert, die als Erfolgskontrolle eine Studienleistung haben, die im Erbringung eines Übungsschein besteht. Die Erbringung eines Übungsschein besteht darin, in regelmäßigen Abstände Übungsblätter zu bearbeiten und zu den genannten Termine abzugeben. Für jedes Übungsblatt werden Punkte vergeben. Der Übungsschein ist bestanden (d.h. die Studienleistung ist erfolgreich erbracht), wenn die in der jeweiligen Veranstaltung genannten Anzahl an Punkte erreicht wird (i.d.R. 40 – 60% der Gesamtpunktzahl).

Im Abschnitt Studienplan werden die einzelnen Module und die darin zu erreichenden Leistungspunkte aufgelistet. Die daraus resultierenden Möglichkeiten, Module untereinander zu kombinieren, werden somit veranschaulicht. Da die Module sowie deren innere Struktur variieren, gibt das Modulhandbuch nähere Auskunft über die Teilleistungen, Prüfungsbedingungen, Inhalte sowie die Gewichtung hinsichtlich der ECTS-Punkte in einem Modul. Der Studienplan hingegen dient der Grobstruktur hinsichtlich des Studienaufbaus. Er ist in seiner Aussage bezüglich der temporalen Ordnung der meisten Module exemplarisch und nicht bindend. Um jedoch die durch die Prüfungsordnung vorgegebenen Fristen einhalten zu können, ist es entscheidend, den Empfehlungen des Plans zu folgen.

1.2 Versionierung von Modulen

Module sind dynamische Konstrukte, in denen es regelmäßig zu Aktualisierungen und somit zu Änderungen kommt. In manchen Fällen werden Module nicht mehr angeboten, manchmal ändern sich die darin angebotenen Lehrveranstaltungen und/oder Voraussetzungen/Bedingungen.

Wenn auch für die Studierenden immer das Modulhandbuch des aktuellen Semesters verbindlich ist, so gilt im Änderungsfall grundsätzlich Vertrauensschutz. Ein Studierender hat einen Anspruch darauf, ein Modul in derselben Form abzuschließen, in der er es begonnen hat. Der Schutz bezieht sich nur auf die Möglichkeit, die Prüfung für das Modul weiterhin für eine gewisse Zeit ablegen zu können, nicht aber auf das Angebot der Lehrveranstaltung während des Semesters. Änderungen werden rechtzeitig im Modulhandbuch angekündigt. Für Pflichtmodule werden i.d.R. großzügige Übergangsregelungen festgelegt. Im Wahlbereich besteht meist die Möglichkeit andere Module zu wählen bzw. Prüfungen abzulegen, um den Abschluss zu erlangen. Wenn ein Modul begonnen wurde, aber nicht mehr beendet werden kann, sollte ISS kontaktiert werden.

Teilleistungen werden i.d.R. nur dann versioniert, wenn sich die Erfolgskontrolle ändert. Auch werden i.d.R. Übergangsregelungen definiert.

1.3 An-/Abmeldung und Wiederholung von Prüfungen

Die An- und Abmeldung zu Prüfungen erfolgt online über das Studierendenportal. Die An- und Abmeldefristen werden rechtzeitig in den Lehrveranstaltungen und/oder auf den Webseiten der Lehrveranstaltungen bekanntgegeben. Studierende werden dazu aufgefordert, sich vor dem Prüfungstermin zu vergewissern, dass sie im System tatsächlich den Status

"angemeldet" haben (z.B. Ausdruck). In Zweifelsfällen sollte ISS (E-Mail: beratung-informatik@informatik.kit.edu) kontaktiert werden. Die Teilnahme an einer Prüfung ohne Online-Anmeldung ist nicht gestattet!

Grundsätzlich kann jede Erfolgskontrolle (mündlicher, schriftlicher oder anderer Art) einmal wiederholt werden. Im Falle einer schriftlichen Prüfung erfolgt nach zweimaligem Nichtbestehen zeitnah (in der Regel im selben Prüfungszeitraum) eine mündliche Nachprüfung. In dieser können nur noch die Noten "ausreichend" (4,0) oder "nicht ausreichend" (5,0) vergeben werden. Ist eine Prüfung endgültig nicht bestanden, so gilt der Prüfungsanspruch im Masterstudiengang Lehramt an Gymnasien als verloren. Eine Teilnahme an weiteren Prüfungen ist nicht möglich. Durch Genehmigung eines Antrags auf Zweitwiederholung können weitere Prüfungen unter Vorbehalt (https://www.informatik.kit.edu/faq-wiki/doku.php) abgelegt werden. Studierenden bekommen diese aber im Erfolgsfall erst angerechnet, wenn die endgültig nicht bestandene Prüfung bestanden wurde. Der Prüfungsanspruch gilt erst dann als wiederhergestellt, wenn die nicht bestandene Prüfung bestanden ist. Studienleistungen (unbenotete Erfolgskontrolle) können beliebig oft wiederholt werden, falls in der Modul- oder Teillleistungsbeschreibung keine weiteren Regelungen vorgesehen sind. Der Zweitwiederholungsantrag ist bei dem Informatik Studiengangservice (ISS) schriftlich einzureichen.

Die Anmeldung zu Prüfungen erfolgt i.d.R. über den Studienablaufplan: Studierende müssen zuvor im Studierendenportal in ihrem persönlichen Studienablaufplan, die für die Prüfungen passenden Module und Teilleistungen wählen. Die Pflichtmodule sind bereits in den Studienablaufplan integriert.

1.4 Studienberatung

Hilfe bei Problemen mit dem Studium, Anträgen aller Art oder auch einfach bei Fragen zur Studienplanung wird von der KIT-Fakultät für Informatik durch den Informatik Studiengangservice (ISS) (beratung-informatik@informatik.kit.edu), angeboten. Der ISS ist offizieller Ansprechpartner und erteilt verbindliche Auskünfte.

Aber auch die Fachschaft der KIT-Fakultät für Informatik und die Hochschulgruppe Lehramt@KIT bieten qualifizierte Beratungen an. Hier können beispielsweise Detailfragen zur Formulierung von Anträgen auf Zweitwiederholung geklärt werden. Darüber hinaus können bei der Fachschaft alte Klausuren und Prüfungsprotokolle erworben werden.

Viele Fragen werden auch durch unsere FAQ beantwortet: https://www.informatik.kit.edu/faq-wiki/doku.php.

Für allegemeine Fragen rund um das Lehramtsstudium am KIT steht das Zentrum für Lehrerbildung (ZLB) zur Verfügung: https://www.hoc.kit.edu/zlb/.

1.FS (26 LP)	Grundbegriffe der Informatik	6 LP
	Programmieren	5 LP
	Ausgewählte Themen für das Informatik-Lehramt	6 LP
	Proseminar	3 LP
	Rechnerorganisation	6 LP
2. FS (31 LP)	Algorithmen I	6 LP
	Softwaretechnik I	6 LP
	Fachdidaktik I	5 LP
	Einführung in Rechnernetze	4 LP
	Datenbanksysteme	4 LP
	Digitaltechnik und Entwurfsverfahren	6 LP
3.FS (25 LP)	Teamprojekt	4 LP
	Theoretische Grundlagen der Informatik	6 LP
	Fachdidaktik II	3 LP
	Betriebssysteme	6 LP
	Stammmodul	6 LP
4.FS (22 LP)	Fachdidaktik III	7 LP
	Masterarbeit	15 LP
3.FS / 4.FS (16 LP)	Wahlmodule	16 LP

Abbildung 1: Struktur des Erweiterungsfaches Master Informatik

2 Studienplan - Struktur des Erweiterungsfaches Master Informatik

Im Laufe des viersemestrigen Studiums werden insgesamt 120 Leistungspunkte für den erfolgreichen Abschluss erbracht (s. Abbildung 1). Das Studium umfasst fachwissenschaftliche Informatikinhalte im Umfang von jeweils 90 LP, fachdidaktische Kenntnisse im Umfang von 15 LP und die Masterarbeit mit 15 LP kann in einem der beiden Fächer durchgeführt werden.

Einige der Module sind Pflichtmodule, welche immer absolviert werden müssen. Andere sind Wahlmodule und können je nach individuellem Studienplan belegt werden. Insgesamt stehen 16 LP für Wahlmodule zur Verfügung. Es kann aus dem gesamten Angebot der KIT-Fakultät gewählt werden.

Im Rahmen des Proseminars müssen Studierende sich mit dem ILIAS-Kurs zur guten Wissenschaftlichen Praxis auseinandersetzen: "Onlinekurs: Gute wissenschaftliche Praxis". Dafür sind 3 Stunden vorgesehen. Unabhängig davon bietet das House of Competence das Absolvieren des Kurses mit 1 LP an. Lehramtsstudierende können diese Leistung als Zusatzleistung erbringen.

2.1 Zusatzleistungen

Im Lehramtstudiengang können bis zu 30 Leistungspunkte durch Zusatzleistungen erbracht werden. Diese zählen weder bzgl. des Umfangs noch was der Note betrifft zum Masterabschluss.

3 Aufbau des Studiengangs

Pflichtbestandteile	
Wissenschaftliches Fach Informatik	105-120 LP

3.1 Wissenschaftliches Fach Informatik

Leistungspunkte

105-120

Wahlinformationen

Als Wahlmodule können alle Informatikmodule an der KIT-Fakultät für Informatik belegt werden. Sofern ein Modul nicht gewählt werden kann, ist ISS zu kontaktieren: beratung-informatik@informatik.kit.edu.

Im Wahlpflichtblock "Stammmodul" muss ein Stammmodul gewählt werden. Weitere Stammmodule sind im Wahlbereich zu wählen. Die Einteilung der Stammmodule auf die beiden Bereiche spielt für die Notenberechnung keine Rolle.

Zertifikat oder Abschluss mit Masterarbeit?

- Die **Masterarbeit** ist in Ihrem Studienablaufplan vorausgewählt. Wenn Sie das Erweiterungsfach mit einer Masterarbeit abschließen wollen, müssen Sie die Wahl nicht ändern.
- Wollen Sie stattdessen ein Zertifikat erhalten, wählen Sie die Masterarbeit bitte ab.

Besonderheiten zur Wahl

Wahlen in diesem Bereich müssen vollständig erfolgen.

Wahl Zertifikat od	der Abschluss mit Masterarbeit (Wahl: zwischen 0 und 1 Bestandteilen)	
M-INFO-104807	Modul Masterarbeit - Informatik neu	15 LP
Pflichtbestandtei	le	
M-INFO-101170	Grundbegriffe der Informatik	6 LP
M-INFO-101174	Programmieren	5 LP
M-INFO-100030	Algorithmen I	6 LP
M-INFO-101175	Softwaretechnik I	6 LP
M-INFO-101172	Theoretische Grundlagen der Informatik	6 LP
M-INFO-101177	Betriebssysteme	6 LP
M-INFO-102978	Digitaltechnik und Entwurfsverfahren	6 LP
M-INFO-103179	Rechnerorganisation	6 LP
M-INFO-101181	Proseminar	3 LP
M-INFO-104921	Datenbanksysteme	4 LP
M-INFO-103455	Einführung in Rechnernetze	4 LP
M-INFO-105151	Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme	6 LP
M-INFO-105153	Teamprojekt	4 LP
M-INFO-103133	Fachdidaktik Informatik I	5 LP
M-INFO-103156	Fachdidaktik II	3 LP
M-INFO-104717	Fachdidaktik III	7 LP
Stammmodul (Wa		, , ,
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100799	Formale Systeme	6 LP
M-INFO-100801	Telematik	6 LP
M-INFO-100803	Echtzeitsysteme	6 LP
M-INFO-100818	Rechnerstrukturen	6 LP
M-INFO-100833	Softwaretechnik II	6 LP
M-INFO-100856	Computergrafik	6 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-INFO-101173	Algorithmen II	6 LP
M-INFO-106315	IT-Sicherheit	6 LP
M-INFO-106299	Fortgeschrittene Künstliche Intelligenz	6 LP
Wahlmodule (Wa		1 01
M-INFO-101219	Basispraktikum TI: Hardwarenaher Systementwurf	4 LP
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100729	Formale Systeme	6 LP
M-INFO-100799	Internet of Everything	4 LP
M-INFO-100800	Telematik	6 LP
M-INFO-100803	Echtzeitsysteme	6 LP
M-INFO-100803	Rechnerstrukturen	6 LP
M-INFO-100818		3 LP
M-INFO-100822	Heterogene parallele Rechensysteme Softwaretechnik II	6 LP
M-INFO-100856	Computergrafik	6 LP
M-INFO-100856 M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-INFO-100693	Algorithmen II	6 LP
M-INFO-101173 M-INFO-101177	Betriebssysteme	6 LP
M-INFO-101177 M-INFO-101183	Mikroprozessoren I	3 LP
	Rechnerorganisation	6 LP
M-INFO-103179		3 LP
M-INFO-104045	Datenschutz von Anonymisierung bis Zugriffskontrolle	
M-INFO-102374	Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte	3 LP
M-INFO-105882	Digitale Barrierefreiheit und Assistive Technologien	3 LP
M-INFO-105884	Seminar: Digitale Barrierefreiheit und Assistive Technologien	3 LP
M-INFO-106014	Grundlagen der Künstlichen Intelligenz	5 LP

M-INFO-106015	Informationssicherheit	5 LP
M-INFO-106303	Access Control Systems: Models and Technology	5 LP
M-INFO-106315	IT-Sicherheit	6 LP
M-INFO-106299	Fortgeschrittene Künstliche Intelligenz	6 LP

4 Module

4.1 Modul: Access Control Systems: Models and Technology [M-INFO-106303]

Verantwortung: Prof. Dr. Hannes Hartenstein **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile					
T-INFO-112775	Access Control Systems: Models and Technology	5 LP	Hartenstein		

Erfolgskontrolle(n)

See Partial Achievements (Teilleistung).

Voraussetzungen

See Partial Achievements (Teilleistung).

Qualifikationsziele

- The student understands the challenges of access control in the era of hyperconnectivity.
- The student understands that an information security model defines access rights that express for a given system which subjects are allowed to perform which actions on which objects. The student understands that a system is said to be secure with respect to a given information security model, if it enforces the corresponding access rights.
- The student is able to derive suitable access control models from scenario requirements and is able to specify concrete
 access control systems. The student is able to decide which concrete architectures and protocols are technically suited
 for realizing a given access control model.
- The student knows access control protocols using cryptographic methods and is able to compare protocol realizations based on different cryptographic building blocks.
- The student is aware of the limits of access control models and systems with respect to their analyzability and performance and security characteristics. The student is able to identify the resulting tradeoffs.
- The student knows the state of the art with respect to current research endeavors, e.g., access control in the context of decentralized and distributed systems, Trusted Execution Environments, AI, robotics, or hash-chain based systems.

Inhalt

Access control systems are everywhere and the backbone of secure services as they incorporate who is and who is not authorized: think of operating systems, information systems, banking, vehicles, robotics, cryptocurrencies, or decentralized applications as examples. The course starts with current challenges of access control in the era of hyperconnectivity, i.e., in cyber-physical or decentralized systems. Based on the derived needs for next generation access control, we first study how to specify access control and analyze strengths and weaknesses of various approaches. We then focus on up-to-date proposals, like IoT and AI access control. We look at current cryptographic access control aspects, blockchains and cryptocurrencies, and trusted execution environments. We also discuss the ethical dimension of access management. Students prepare for lecture and exercise sessions by studying previously announced literature and by preparation of exercises that are jointly discussed in the sessions.

Arbeitsaufwand

Lecture workload:

1. Attendance time

Lecture: 2 SWS: 2,0h x 15 = 30h Exercises: 1 SWS: 1,0h x 15 = 15h

2. Self-study (e.g., independent review of course material, work on homework assignments) Weekly preparation and follow-up of the lecture: 15 x 1h x 3 = 45h

Weekly preparation and follow-up of the exercise: $15 \times 2h = 30h$

3. Preparation for the exam: 30h

 Σ = 150h = 5 ECTS

Empfehlungen

Basics according to the lectures "IT Security Management for Networked Systems" and "Telematics" are recommended.

4.2 Modul: Algorithmen I [M-INFO-100030]

Verantwortung: TT-Prof. Dr. Thomas Bläsius **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-100001	Algorithmen I	6 LP	Bläsius	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- kennt und versteht grundlegende, häufig benötigte Algorithmen, ihren Entwurf, Korrektheits- und Effizienzanalyse, Implementierung, Dokumentierung und Anwendung,
- · kann mit diesem Verständnis auch neue algorithmische Fragestellungen bearbeiten,
- wendet die im Modul Grundlagen der Informatik (Bachelor Informationswirtschaft / Wirtschaftsinformatik) erworbenen Programmierkenntnisse auf nichttriviale Algorithmen an,
- wendet die in Grundbegriffe der Informatik und den Mathematikvorlesungen erworbenen mathematischen Herangehensweise an die Lösung von Problemen an. Schwerpunkte sind hier formale Korrektheitsargumente und eine mathematische Effizienzanalyse.

Inhalt

Dieses Modul soll Studierenden grundlegende Algorithmen und Datenstrukturen vermitteln.

Die Vorlesung behandelt unter anderem:

- · Grundbegriffe des Algorithm Engineering
- Asymptotische Algorithmenanalyse (worst case, average case, probabilistisch, amortisiert)
- · Datenstrukturen z.B. Arrays, Stapel, Warteschlangen und Verkettete Listen
- Hashtabellen
- Sortieren: vergleichsbasierte Algorithmen (z.B. quicksort, insertionsort), untere Schranken, Linearzeitalgorithmen (z.B. radixsort)
- Prioritätslisten
- Sortierte Folgen, Suchbäume und Selektion
- Graphen (Repräsentation, Breiten-/Tiefensuche, Kürzeste Wege, Minimale Spannbäume)
- Generische Optimierungsalgorithmen (Greedy, Dynamische Programmierung, systematische Suche, Lokale Suche)
- · Geometrische Algorithmen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

Empfehlungen

4.3 Modul: Algorithmen II [M-INFO-101173]

Verantwortung: Prof. Dr. Peter Sanders **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	4	1

Pflichtbestandteile			
T-INFO-102020	Algorithmen II	6 LP	Sanders

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende besitzt einen vertieften Einblick in die theoretischen und praktischen Aspekte der Algorithmik und kann algorithmische Probleme in verschiedenen Anwendungsgebieten identifizieren und formal formulieren. Außerdem kennt er/sie weiterführende Algorithmen und Datenstrukturen aus den Bereichen Graphenalgorithmen, Algorithmische Geometrie, String-Matching,

Algebraische Algorithmen, Kombinatorische Optimierung und Algorithmen für externen Speicher. Er/Sie kann unbekannte Algorithmen eigenständig verstehen, sie den genannten Gebieten zuordnen, sie anwenden, ihre Laufzeit bestimmen, sie beurteilen sowie geeignete

Algorithmen für gegebene Anwendungen auswählen. Darüber hinaus ist der/die Studierende in der Lage bestehende Algorithmen auf verwandte Problemstellungen zu übertragen.

Neben Algorithmen für konkrete Problemstellungen kennt der/die Studierende fortgeschrittene Techniken des algorithmischen Entwurfs. Dies umfasst parametrisierte Algorithmen, approximierende Algorithmen, Online-Algorithmen, randomisierte Algorithmen, parallele Algorithmen, lineare Programmierung, sowie Techniken des Algorithm Engenieering. Für gegebene Algorithmen kann der/die Studierende eingesetzte Techniken identifizieren und damit diese Algorithmen besser verstehen. Darüber hinaus kann er für eine gegebene Problemstellung geeignete Techniken auswählen und sie nutzen, um eigene Algorithmen zu entwerfen.

Inhalt

Dieses Modul soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

4.4 Modul: Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme [M-INFO-105151]

Verantwortung: Prof. Dr. Bernhard Beckert

Prof. Dr. Hannes Hartenstein KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-INFO-109126	Funktionale Programmierung	2 LP	Snelting		
T-INFO-110417	Ausgewählte Themen	4 LP			

Erfolgskontrolle(n)

Einrichtung:

Siehe Teilleitung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- I. Funktionale Programmierung:
 - 1. Der/Die Studierende kann das Paradigma der funktionalen Programmierung definieren, einordnen und vom imperativen Paradigma abgrenzen.
 - 2. Der/Die Studierende beherrscht das Entwickeln kleiner bis mittelgroßer Haskell-Programme als Beispiel funktionaler Programmierung und kann Funktionen höherer Ordnung, Kombinatoren, Polymorphismus und unendliche Listen nutzen.

II. Werte und Verantwortung:

- 1. Der/Die Studierende kennt unterschiedliche Ausprägungen informationstechnischer Systeme, kann deren historischer Einfluss benennen und die Notwendigkeit zur Vermittlung im Unterricht diskutieren.
- Der/Die Studierende kennt die wesentlichen Schutzziele der IT-Sicherheit und kann ihre Bedeutung und Zielsetzung wiedergeben
- 3. Der/Die Studierende versteht Aufbau, Phasen und wichtige Standards des IT-Sicherheitsprozesses als Teil eines Risikomanagements und kann seine Anwendung beschreiben.
- 4. Der/Die Studierende versteht die Funktionsweise elementarer kryptographischer Bausteine und kann deren Eignung für spezifische Fälle bewerten.
- 5. Der/Die Studierende kennt zentrale Gesetze und Grundsätze aus dem rechtlichen Umfeld von Datenschutz und Urheberrecht.
- Der/Die Studierende gewinnt Einsicht in die Verantwortung beim Entwurf und beim Einsatz informationsverarbeitender Systeme.

III. Interaktion und Barrierefreiheit

- 1. Der/Die Studierende bekommt einen Einblick in rechtliche und gesellschaftliche Themen, die das Thema Barrierefreiheit begründen und lernt die wichtigsten Richtlinien (PDF/UA, WCAG, BITV) zur Gestaltung barrierefreier Zugänge kennen.
- 2. Der/Die Studierende wird eine Vorstellung von verschiedenen assistiven Technologien für Menschen mit Behinderung am Beispiel Sehbehinderung bekommen.
- 3. Der/Die Studierende erlernt grundlegende Schritte zur Erstellung barrierefreier Dokumente, Webseiten und Software.
- 4. Der/Die Studierende kennt die Grundlagen und einige grundlegende Methoden der Mensch-Maschine-Interaktion.
- 5. Der/Die Studierende kennt die PACT-Methode zur Gestaltung von Mensch-Maschine-Interaktionsschnittstellen.
- 6. Der/Die Studierende versteht ausgewählte grundlegende Konzepte, Algorithmen und Techniken der Computergrafik und Visualisierung.
- 7. Der/Die Studierende hat einen Überblick über aktuelle Forschungsthemen der modernen Robotik und künstlichen Intelligenz. Er/Sie versteht grundlegende Konzepte und kann sie auf gegebene Problemstellungen anwenden. Er/Sie versteht Herausforderungen, Limitationen und Potentiale der Robotik und KI. Er/Sie erlangt Wissen zu den Themen: intuitive Roboterprogrammierung, Lernen aus Beobachtung des Menschen, Perzeption-Aktion-Zyklus, kognitive Roboterarchitekturen.

Inhalt

Dieses Modul vermittelt Studierenden in den folgenden Themengebieten einen lehramtsrelevanten Ein- und Überblick:

- 1. Alternative Programmierparadigmen: funktionale Programmierung
- 2. Werte und Verantwortung: Geschichte der Informatik, IT-Sicherheit und ihr Management, Rechtsaspekte (insb. Datenschutz und geistiges Eigentum), werteorientiertes Design
- 3. Interaktion und Barrierefreiheit: Richtlinien zur Gestaltung barrierefreier Dokumente, Websites und Software, Assistive Technologien, Einführung in Mensch-Maschine-Interaktion, Computergraphik, Robotik

Dieses Modul trägt somit zur Vermittlung der Leitgedanken "Modellieren und Problemlösen", "Wirkprinzipien der Informatik" und "Informatik und Gesellschaft" bei.

Anmerkungen

Für den Teil "Programmierparadigmen" sind die ersten sechs Veranstaltungen der Vorlesung "Programmierparadigmen" und die ersten vier Veranstaltungen der Übung "Programmierparadigmen" bei Prof. Snelting zu besuchen. Informationen zur Organisation der Lehrveranstaltung entnehmen Sie bitte den Internetseiten der Forschungsgruppe Dezentrale Systeme und Netzdienste von Prof. Hartenstein.

Arbeitsaufwand

Ausgewählte Themen: 2 SWS: 15 x 2h = 30h Übung Ausgewählte Themen: 1 SWS: 15 x 1h = 15h Programmierparadigmen: 1 SWS: 15 x 1h = 15h

Wöchentliche Vor- und Nachbereitung: $15 \times 1,5 \times 4 = 90h$

Prüfungsvorbereitung: 30h

180h = 6 ECTS

Empfehlungen

Kenntnisse zu Grundlagen aus Mathematik, Programmierung und Rechnernetzen sind hilfreich.

4.5 Modul: Basispraktikum TI: Hardwarenaher Systementwurf [M-INFO-101219]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-INFO-102011	Basispraktikum TI: Hardwarenaher Systementwurf	4 LP	Karl		
T-INFO-105983	Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung	0 LP	Karl		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden verstehen grundlegende Methoden der Informatik auf dem Gebiet des Hardwareentwurfs und können diese an einfachen Beispielen anwenden. Sie können Probleme beim Entwurf von Hardware erfassen und diese für einfache Beispiele selbständig strukturieren und lösen. Zudem sind sie in der Lage die Lösungen in Wort und Schrift wiederzugeben und die erzielten Resultate Fachfremden zu präsentieren. Des Weiteren können komplexere Aufgabenstellungen im Bereich des Hardwareentwurfs geeignet in einem Team gelöst werden.

Lernziele:

Studierende sind in der Lage einfache Hardwareschaltungen mittels der Hardwarebeschreibungssprache VHDL zu entwickeln und diese korrekt auf einem FPGA-basierten Entwicklungsboard laufen zu lassen. Sie sind fähig herstellerspezifische Werkzeuge für obigen Vorgang zu verwenden. Durch die eigenständige Planung eines Abschlussprojekts in einem Team, haben die Studierende die Kompetenz die erlernten Methoden für komplexere Aufgabenstellung anzuwenden. Somit sind sie in der Lage auch komplexere Aufgaben geeignet zu analysieren, zu planen, Aufgaben zu verteilen und diese zu einer funktionierenden Schaltung zusammenzuführen. Zudem können sie die Ergebnisse geeignet aufbereiten, um auch Fachfremden diese vermitteln zu können

Inhalt

- · Kennenlernen der Hardwarebeschreibungssprache VHDL
- · Einführung in verschiedene generische und herstellerspezifizsche Entwurfswerkzeuge
- · Einführung und Grundlagen programmierbarer Logikbausteine (FPGAs)
- · Schaltungsentwurf und -implementation
- · Selbständiger Entwurf einer Hardwareschaltung in Teamarbeit
- · Projektplannung
- $\cdot \ \text{Implementierungsphase in einem Team}$
- · Vorstellung der Ergebnisse durch eine Präsentation

Arbeitsaufwand

Themen-Einführungen: 6 x 3 SWS = 18 SWS Übungsblätter: 2 x 3 x 4 SWS = 24 SWS

Abschlussprojekt:

- Entwurf/Projektplan 8 SWS
- Implementierungsphase 8 x 8 SWS = 64 SWS
- Projektvorstellung: 1 x 10 SWS = 10 SWS
- = 124 SWS = 4 ECTS

Empfehlungen

4.6 Modul: Betriebssysteme [M-INFO-101177]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil) Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte Notenskala Turnus Dauer Sprache Level Version Zehntelnoten Jedes Wintersemester 1 Semester Deutsch

Pflichtbestandteile			
T-INFO-101969	Betriebssysteme	6 LP	Bellosa

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Studierenden beschreiben die grundlegenden Mechanismen und Strategien eines Betriebssystems. Die Studierenden zeigen die Abläufe in den einzelnen Komponenten eines Betriebssystems auf und verfolgen die Interaktion über genormte Schnittstellen.

Die Studierenden nutzen praktisch die Systemschnittstelle, um Dienste vom Betriebssystem anzufordern. Dazu entwerfen und implementieren die Studierenden kleine Anwendung und nutzen dabei Systemaufrufe.

Inhalt

Studierende beschreiben Mechanismen, Verfahren und Kontrollstrukturen in folgenden Betriebssystemkomponenten:

- Prozessverwaltung
- Synchronisation
- Speicherverwaltung
- Dateisystem
- I/O Verwaltung

Anmerkungen

Die semesterbegleitenden Übungsaufgaben sind freiwillig.

Arbeitsaufwand

60 h 4 SWS * 15 Nachbearbeitung 60 h 4 h * 15 Nachbearbeitung 30 h 2 h * 15 Tutorium 30 h Klausurvorbereitung 180 h = 6 ECTS

Empfehlungen

4.7 Modul: Computergrafik [M-INFO-100856]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)

Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1	

Pflichtbestandteile					
T-INFO-101393	Computergrafik	6 LP	Dachsbacher		
T-INFO-104313	Übungen zu Computergrafik	0 LP	Dachsbacher		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden verstehen grundlegende Konzepte und Algorithmen der Computergrafik, können diese analysieren und implementieren und für Anwendungen in der Computergrafik einsetzen. Die erworbenen Kenntnisse ermöglichen einen erfolgreichen Besuch weiterführender Veranstaltungen im Vertiefungsgebiet Computergrafik.

Inhalt

Diese Vorlesung vermittelt grundlegende Algorithmen der Computergrafik, Farbmodelle, Beleuchtungsmodelle, Bildsynthese-Verfahren (Ray Tracing, Rasterisierung), Transformationen und Abbildungen, Texturen und Texturierungstechniken, Grafik-Hardware und APIs (z.B. OpenGL), geometrisches Modellieren und Dreiecksnetze.

Arbeitsaufwand

Präsenzzeit = 60h

Vor-/Nachbereitung = 90h

Klausurvorbereitung = 30h

Empfehlungen

4.8 Modul: Datenbanksysteme [M-INFO-104921]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-INFO-101497	Datenbanksysteme	4 LP	Böhm	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende

- ist in der Lage den Nutzen von Datenbank-Technologie darzustellen,
- kennt die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen,
- ist in der Lage selbstständig einfache Datenbanken anzulegen und Zugriffe auf diese zu tätigen,

kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie

Inhalt

Datenbanksysteme gehören zu den entscheidenden Softwarebausteinen in modernen Informationssystemen und sind ein zentrales Thema der Universitätsstudiengänge im Gebiet der Informatik. Ziel der Vorlesung ist die Vermittlung von Grundkenntnissen zur Arbeit mit Datenbanken. Die wichtigen Themen der Vorlesung sind guter Datenbankentwurf, der Zugriff auf Datenbanken und die Anbindung an Anwendungen, Mehrbenutzerbetrieb und eine Übersicht über unterschiedliche Datenbanktypen (relational vs. NoSQL insbesondere).

Arbeitsaufwand

42 h Präsenzzeit

- + Vor- und Nachbereitungszeiten 55 h
- + 23 h Klausurvorbereitung
- = 120 h = 4 ECTS

Empfehlungen

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

4.9 Modul: Datenschutz von Anonymisierung bis Zugriffskontrolle [M-INFO-104045]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Unregelmäßig	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-108377	Datenschutz von Anonymisierung bis Zugriffskontrolle	3 LP	Böhm	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Grundkenntnisse zu Datenbanken, verteilten Informationssystemen, Systemarchitekturen und Kommunikationsinfrastrukturen, z.B. aus der Vorlesung Datenbanksysteme

Qualifikationsziele

Die Teilnehmer werden in die Ziele und Grundbegriffe der Informationellen Selbstbestimmung eingeführt.

Sie sind in der Lage die grundlegenden Herausforderungen des Datenschutzes und ihre vielfältigen Auswirkungen auf Gesellschaft und Individuen zu benennen.

Außerdem beherrschen sie aktuelle Technologien zum Datenschutz und können diese anwenden. Z.B. Methoden des Spatial & Temporal Cloaking.

Die Studenten sollen damit in die Lage versetzt werden, die Risiken unbekannter Technologien für die Privatheit zu analysieren, geeignete Maßnahmen zum Umgang mit diesen Risiken vorschlagen und die Effektivität dieser Maßnahmen abschätzen.

Inhalt

In diesem Modul soll vermittelt werden, welchen Einfluss aktuelle und derzeit in der Entwicklung befindliche Informationssysteme auf Privatheit ausüben. Diesen Herausforderungen werden technische Maßnahmen zum Datenschutz, die derzeit in der Forschung diskutiert werden, gegenübergestellt. Ein Exkurs zu den gesellschaftlichen Implikationen von Datenschutzproblemen und Datenschutztechniken rundet das Modul ab.

Arbeitsaufwand

22 h Präsenzzeit

- + Vor- und Nachbereitungszeiten (1,5 x 2) x 15 = 45 h
- + 17 h Klausurvorbereitung
- = 84 h = 3 ECTS

4.10 Modul: Digitale Barrierefreiheit und Assistive Technologien [M-INFO-105882]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte

ຊີ່

Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch Level 4 Version 1

Pflichtbestandteile					
T-INFO-111830	Digitale Barrierefreiheit und Assistive Technologien	3 LP	Stiefelhagen		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden erhalten eine Einführung in die Thematik Barrierefreiheit insbesondere die digitale Barrierefreiheit und inklusive Digitalisierung. Mit der Verdeutlichung der gesellschaftlichen Mehrwerte für alle Nutzenden.
- Die Studierenden werden befähigt, die rechtlichen Grundlagen im Bereich "Barrierefreiheit" zu verstehen und anzuwenden, um die Bedürfnisse von Menschen mit Behinderungen zu berücksichtigen.
- Die Studierenden erlangen ein fundiertes Verständnis über Sehschädigungen, einschließlich deren Ursachen und Auswirkungen, um angemessene Lösungen und Unterstützung für Betroffene bereitzustellen.
- Die Studierenden entwickeln Kompetenzen im Umgang mit existierenden Assistiven Technologien (AT) für verschiedene Anwendungsfelder, darunter AT für den Alltag, Mobilitätsunterstützung und Informationszugang. Und sie lernen die zugehörigen Feedback-Mechanismen kennen.
- Die Studierenden erlernen die Umsetzung von Richtlinien für die Entwicklung barrierefreier Webseiten und Softwareanwendungen, um sicherzustellen, dass digitale Inhalte für alle zugänglich sind.
- Die Studierenden erwerben Kenntnisse und Fertigkeiten in der barrierefreien Softwareentwicklung und Dokumentenerstellung, um inklusive Softwareprodukte und Dokumente zu gestalten.
- Die Studierenden werden mit aktuellen Forschungsansätzen im Bereich assistiver Technologien vertraut gemacht, insbesondere in Bezug auf die Nutzung von Methoden des Maschinellen Sehens (Computer Vision) zur Entwicklung innovativer AT-Lösungen.
- Die Studierenden sind in der Lage, Assistive Technologien zu evaluieren und deren Wirksamkeit und Nutzerfreundlichkeit zu bewerten, um sicherzustellen, dass sie den Bedürfnissen der Zielgruppen entsprechen.

Inhalt

Digitale Barrierefreiheit oder besser digitale "Zugänglichkeit" (Accessibiltiy, wie es auf Englisch heißt) ist ein Thema, das uns alle betrifft. Digital an Informationen zu kommen, von Kindesbeinen an bis ins hohe Alter. Assistive Technologien, wie Smartphones, Tablets, Smartwatches, Wearables allgemein sind ein Teil unseres Alltages geworden. Genau diese Dinge sollten von allen Menschen bedienbar und nutzbar sein. Unabhängig jeglicher Barrieren.

Aber was steckt an Details dahinter? Wie sehen Rechte und Grundlagen hierzu aus? Was muss alles getan werden, um "barrierefrei" zu sein?

Dies alles lässt sich am besten am Beispiel "Sehbehinderung" zeigen.

Weltweit gibt es nach Angaben der Weltgesundheitsorganisation ca. 285 Million Menschen mit Sehschädigungen, davon ca. 39 Millionen Menschen, die blind sind. Der teilweise oder vollständige Verlust des Sehvermögens schränkt Blinde und Sehbehinderte in erheblichem Maße in ihrem Arbeits- und Sozialleben ein. Sich ohne fremde Hilfe im öffentlichen Raum zu orientieren und fortzubewegen, gestaltet sich schwierig: Gründe hierfür sind Probleme bei der Wahrnehmung von Hindernissen und Landmarken sowie die daraus resultierende Angst vor Unfällen und Orientierungsschwierigkeiten. Weitere Probleme im Alltagsleben sind: das Lesen von Texten, die Erkennung von Geldscheinen, von Nahrungsmitteln, Kleidungstücken oder das Wiederfinden von Gegenständen im Haushalt.

Zur Unterstützung können Blinde und Sehbehinderte bereits auf eine Reihe von technischen Hilfsmitteln zurückgreifen. So können digitalisierte Texte durch Sprachausgabe oder Braille-Ausgabegeräte zugänglich gemacht werden. Es gibt auch verschiedene speziell für Blinde hergestellte Geräte. Das wichtigste Hilfsmittel zur Verbesserung der Mobilität ist mit großem Abstand der Blindenstock. In den vergangenen Jahren wurden auch einige elektronische Hilfsmittel zur Hinderniserkennung oder Orientierungsunterstützung entwickelt, diese bieten aber nur eine sehr eingeschränkte Funktionalität zu einem relativ hohen Preis und sind daher eher selten im Einsatz.

Die Vorlesung gibt einen Überblick über zum Thema IT-basierte Assistive Technologien (AT) am Beispiel und beinhaltet die folgenden Themen:

- · Rechtliche Grundlagen
- · Grundlagen zu Sehschädigungen, deren Ursachen und Auswirkungen
- · Existierende Hilfsmittel für verschiedene Anwendungsfelder
- · AT für den Informationszugang
- · Barrierefreie Softwareentwicklung
- · Barrierefreies Design von Webseiten
- · Barrierefreie Dokumente
- · Nutzung von Methoden des Maschinellen
- · Feedbacksysteme und deren Grundlagen
- Einblicke in aktuelle Forschungsthemen rund um das Thema "digitale Barrierefreiheit"

Aktuelle Informationen finden Sie unter http://cvhci.anthropomatik.kit.edu/

Arbeitsaufwand

Besuch der Vorlesungen: ca. 20 Stunden (à 60 Minuten) Vor- und Nachbereitung der Vorlesung: ca. 30 Stunden

Klausurvorbereitung: ca. 40 h Summe: ca. 90 Stunden

4.11 Modul: Digitaltechnik und Entwurfsverfahren [M-INFO-102978]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-103469	Digitaltechnik und Entwurfsverfahren	6 LP	Hanebeck	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Studierenden sollen in die Lage versetzt werden,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben,
- den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können
- einen Rechner aus Grundkomponenten aufbauen zu können.

Inhalt

Der Inhalt der Lehrveranstaltung umfasst die Grundlagen des Aufbaus und der Organisation von Rechnern; die Befehlssatzarchitektur verbunden mit der Diskussion RISC – CISC; Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmnisse und Methoden zur Auflösung von Pipeline-Konflikten; Speicherkomponenten, Speicherorganisation, Cache-Speicher; Ein-/Ausgabe-System und Schnittstellenbausteine; Interrupt-Verarbeitung; Bus-Systeme; Unterstützung von Betriebssystemfunktionen: virtuelle Speicherverwaltung, Schutzfunktionen.

Arbeitsaufwand

Präsenzzeit in Vorlesungen, Übungen: 120 h Vor-/Nachbereitung derselbigen: 30 h

Klausurvorbereitung und Präsenz in selbiger: 30 h

Der Gesamtarbeitsaufwand für dieser Lehrveranstaltung beträgt ca. 180 Stunden (6 Credits).

Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.12 Modul: Echtzeitsysteme [M-INFO-100803]

Verantwortung: Prof. Dr.-Ing. Thomas Längle **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-101340	Echtzeitsysteme	6 LP	Längle

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teileistung.

Qualifikationsziele

- Der Student versteht grundlegende Verfahren, Modellierungen und Architekturen von Echtzeitsystemen am Beispiel der Automatisierungstechnik mit Messen, Steuern und Regeln und kann sie anwenden.
- Er kann einfache zeitkontinuierliche und zeitdiskrete PID-Regelungen modellieren und entwerfen sowie deren Übertragungsfunktion und deren Stabilität berechnen.
- Er versteht grundlegende Rechnerarchitekturen und Hardwaresysteme für Echtzeit- und Automatisierungssysteme.
- Er kann Rechnerarchitekturen für Echtzeitsysteme mit Mikrorechnersystemen und mit Analog- und Digitalschnittstellen zum Prozess entwerfen und analysieren.
- Der Student versteht die grundlegenden Problemstellungen wie Rechtzeitigkeit, Gleichzeitigkeit und Verfügbarkeit in der Echtzeitprogrammierung und Echtzeitkommunikation und kann die Verfahren synchrone, asynchrone Programmierung und zyklische zeitgesteuerte und unterbrechungsgesteuerte Steuerungsverfahren anwenden.
- Der Student versteht die grundlegenden Modelle und Methoden von Echtzeitbetriebssystemen wie Schichtenmodelle, Taskmodelle, Taskzustände, Zeitparameter, Echtzeitscheduling, Synchronisation und Verklemmungen, Taskkommunikation, Modelle der Speicher- und Ausgabeverwaltung sowie die Klassifizierung und Beispiele von Echtzeitsystemen.
- Er kann kleine Echtzeitsoftwaresysteme mit mehreren synchronen und asynchronen Tasks verklemmungsfrei entwerfen.
- · Er versteht die Grundkonzepte der Echtzeitmiddleware sowie der sicherheitskritischen Systeme
- Der Student versteht die grundlegenden Echtzeit-Problemstellungen in den Anwendungsbereichen Sichtprüfsysteme, Robotersteuerung und Automobil

Inhalt

Es werden die grundlegenden Prinzipien, Funktionsweisen und Architekturen von Echtzeitsystemen vermittelt. Einführend werden die grundlegenden Rechnerarchitekturen (Mikrorechner, Mikrokontroller Signalprozessoren, Parallelbusse) dargestellt. Echtzeitkommunikation wird am Beispiel verschiedener Feldbusse eingeführt. Es werden weiterhin die grundlegenden Methoden der Echtzeitprogrammierung (synchrone und asynchrone Programmierung), der Echtzeitbetriebssysteme (Taskkonzept, Echtzeitscheduling, Synchronisation, Ressourcenverwaltung) sowie der Echtzeit-Middleware dargestellt. Hierauf aufbauend wir die Thematik der Hardwareschnittstellen zwischen Echtzeitsystem und Prozess vertieft. Danach werden grundlegende Methoden für Modellierung und Entwurf von diskreten Steuerungen und zeitkontinuierlichen und zeitdiskreten Regelungen für die Automation von technischen Prozessen behandelt. Abgeschlossen wird die Vorlesung durch das Thema der sicherheitskritischen Systeme sowie den drei Anwendungsbeispielen Sichtprüfsysteme, Robotersteuerung und Automobil.

Arbeitsaufwand

 $(4 \text{ SWS} + 1.5 \text{ x} 4 \text{ SWS}) \text{ x} 15 + 15 \text{ h} \text{ Klausurvorbereitung} = 165/30 = 5.5 \text{ LP} \sim 6 \text{ LP}.$

4.13 Modul: Einführung in Rechnernetze [M-INFO-103455]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pfli	chtbestandteile			
T-I	INFO-102015	Einführung in Rechnernetze	4 LP	Zitterbart

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

keine.

Qualifikationsziele

Studierende

- sind in der Lage, den grundlegenden Aufbau von Rechnernetzen zu beschreiben.
- sind mit verschiedenen Schichtenmodellen von Kommunikationsnetzen vertraut, kennen ihre Schnittstellen und können Protokolle und Aufgaben den verschiedenen Schichten zuordnen.
- verstehen, wie das Zusammenspiel der Schichten funktioniert.
- können grundlegende Bausteine zur Fehlerbehebung beschreiben, bewerten und anwenden.
- können ARQ-Verfahren anwenden, vergleichen und bewerten.
- können Medienzuteilungsverfahren wie Aloha, CSMA/CD und Token Ring anwenden und bewerten.
- sind in der Lage, grundlegende Routing-Verfahren zu beschreiben und anzuwenden.
- verstehen den Zweck von Transportprotokollen und können diese je nach Anwendungsfall unterschiedlich einsetzen.
- kennen grundlegende Anwendungen des Internets, wie DNS, E-Mail und das WWW.

Inhalt

In dieser Vorlesung werden die Grundlagen von Rechnernetzen gelehrt, wobei im Zentrum der Vorlesung das Internet steht.

In den letzten Jahrzehnten hat das Internet unser Leben grundlegend verändert und ist ein essentieller Bestandteil unseres Lebens geworden: ohne ein funktionierendes Internet würden Börsen, Banken und Lieferketten zusammenbrechen. Mit der Verbreitung von sozialen Medien und Smartphones ist das Internet nahezu allgegenwärtig und spielt für unsere gesellschaftliche Entwicklung eine enorm wichtige Rolle. Die Zahl der vernetzten Geräte nimmt ständig zu und umfasst immer mehr Geräteklassen, vom Auto bis zur Kaffeemaschine. Kaum ein System und kaum eine Anwendung wird in der Zukunft ohne das Internet funktionieren.

Es liegt auf der Hand, dass das technische Verständnis des Internets ein wichtiger Skill ist. In dieser Vorlesung werden Sie lernen, wie das Internet aufgebaut ist und wie es funktioniert.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden (= 4 ECTS * 30 h) oder 2+1 = 3 SWS

Vorlesung: 14 Termine x 1.5 h = 21 h

Nachbereitung der Vorlesung: 14 x 1.5 h = 21 h Bearbeitung der Übungen: 7x 3 h = 21 h

Übung: 7 Termine x 1.5 h = 10.5 h Klausurvorbereitung: 44.5 h

Klausur: 2 h (davon 1 h tatsächliche Prüfungszeit)

4.14 Modul: Fachdidaktik II [M-INFO-103156]

Verantwortung: Prof. Dr. Bernhard Beckert

Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-106280	Fachdidaktik II	3 LP	Beckert, Zechnall

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden:

- verfügen über fachdidaktisches Wissen, insbesondere zur Bestimmung, Auswahl und Begründung von Zielen, Inhalten, Methoden und Medien informatischer Bildung
- · können Inhalts- und Prozessbereiche auf Anwendungsfelder übertragen
- können Bildungsziele der Informatik in den Allgemeinbildungsauftrag der Schule einordnen
- können aktuelle Entwicklungstendenzen zur Schulinformatik reflektieren und eine kritische Offenheit bezüglich neuer Entwicklungen der Informatik vertreten

können Bezüge zwischen ihrem Fachwissen und der Schulinformatik herstellen

Inhalt

Das Seminar ist inhaltlich in zwei Module gegliedert:

- 1. Unterrichtsmaterialien didaktisch aufbereiten
- 2. Unterricht planen und mit der aus dem Teamprojekt entwickelten Software durchführen

Allgemein geht es in beiden Bereichen um:

- · Grundlegende Planung, Organisation, Durchführung und anschließende Reflexion von kompetenzorientiertem Informatikunterricht
- Inhalts- und Prozessbereiche eines allgemeinbildenden Informatikunterrichts
- · Didaktische Reduktion fachlichen Wissens

Methoden des Informatikunterrichts, insbesondere Auswahl und Einsatz von Werkzeugen, spezifische Arbeitsformen und Binnendifferenzierung

Anmerkungen

Das Modul muss zusammen mit dem Modul Teamprojekt belegt und geprüft werden.

Arbeitsaufwand

90h, davon:

- 1. 22,5h Präsenzzeit in Vorlesungen und Übungen
- 2. 52,5h Vor-/Nachbereitung derselbigen
- 3. 15h Prüfungsvorbereitung und Präsenz in selbiger.

Empfehlungen

Programmierkenntnisse in Java sind erforderlich

4.15 Modul: Fachdidaktik III [M-INFO-104717]

Verantwortung: Prof. Dr. Bernhard Beckert

Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte
7Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-INFO-109614	Fachdidaktik III	7 LP	Zechnall

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden:

- können ihr fachdidaktisches Wissen, insbesondere zur Bestimmung, Auswahl und Begründung von Zielen, Inhalten, Methoden und Medien informatischer Bildung im Unterrichtskontext anwenden und reflektieren
- können fachdidaktische Konzepte benennen und bewerten
- können erste Erfahrungen in der Planung, Durchführung und Analyse von kompetenzorientiertem Informatikunterricht reflektieren
- · können Lernsoftware und rechnergestützte Lern- und Lehrmethoden zielgerichtet einsetzen
- können Bildungsziele der Informatik in den Allgemeinbildungsauftrag der Schule einordnen

können Bezüge zwischen ihrem Fachwissen und der Schulinformatik herstellen

Inhalt

Das Seminar ist inhaltlich in zwei Module gegliedert:

- 1. Einsatz und Erstellung von Unterrichtswerkzeugen
- 2. Softwareprojekte im Informatikunterricht

Es geht in beiden Bereichen um die:

- grundlegende Planung, Organisation, Durchführung und anschließende Reflexion von kompetenzorientiertem Informatikunterricht
- Didaktische Rekonstruktion fachlichen Wissens
- Klassische und moderne Ansätze bei der Softwareentwicklung in Bezug auf Kleinprojekte im Unterricht

Methoden des Informatikunterrichts, insbesondere Auswahl und Einsatz von Werkzeugen, spezifische Arbeitsformen und Binnendifferenzierung

Arbeitsaufwand

210h, davon:

- 1. 60h Präsenzzeit in Vorlesungen und Übungen
- 2. 120h Vor-/Nachbereitung derselbigen
- 3. 30h Prüfungsvorbereitung und Präsenz in selbiger.

Empfehlungen

Programmierkenntnisse in Java sind erforderlich

4.16 Modul: Fachdidaktik Informatik I [M-INFO-103133]

Verantwortung: Prof. Dr. Bernhard Beckert

Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-106234	Fachdidaktik Informatik I	5 LP	Beckert, Zechnall

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- verfügen über fachdidaktisches Wissen, insbesondere zur Bestimmung, Auswahl und Begründung von Zielen, Inhalten, Methoden und Medien informatischer Bildung
- können Inhalts- und Prozessbereiche auf Anwendungsfelder übertragen
- · können Bildungsziele der Informatik in den Allgemeinbildungsauftrag der Schule einordnen
- können aktuelle Entwicklungstendenzen zur Schulinformatik reflektieren und eine kritische Offenheit bezüglich neuer Entwicklungen der Informatik vertreten
- · können Bezüge zwischen ihrem Fachwissen und der Schulinformatik herstellen

Inhalt

- Grundlegende Planung, Organisation, Durchführung und anschließende Reflexion von kompetenzorientiertem Informatikunterricht
- · Inhalts- und Prozessbereiche eines allgemeinbildenden Informatikunterrichts
- · Didaktische Reduktion fachlichen Wissens
- Methoden des Informatikunterrichts, insbesondere Auswahl und Einsatz von Werkzeugen, spezifische Arbeitsformen und Binnendifferenzierung

Arbeitsaufwand

150h, davon:

- 1. 45h Präsenzzeit in Vorlesungen und Übungen
- 2. 80h Vor-/Nachbereitung der selbigen
- 3. 25h Prüfungsvorbereitung und Präsenz in selbiger.

Empfehlungen

4.17 Modul: Formale Systeme [M-INFO-100799]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-INFO-101336	Formale Systeme	6 LP	Beckert

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...

- kennen und verstehen die vorgestellten logischen Grundkonzepte und Begriffe, insbesondere den Modellbegriff und die Unterscheidung von Syntax und Semantik.
- können natürlichsprachlich gegebene Sachverhalte in verschiedenen Logiken formalisieren sowie logische Formeln verstehen und ihre Bedeutung in natürliche Sprache übersetzen,
- können die vorgestellten Kalküle und Analyseverfahren auf gegebene Fragestellungen bzw. Probleme sowohl manuell als auch mittels interaktiver und automatischer Werkzeugunterstützung anwenden,
- kennen die grundlegenden Konzepte und Methoden der formalen Modellierung und Verifikation,
- können Programmeigenschaften in formalen Spezifikationssprachen formulieren, und kleine Beispiele mit Unterstützung von Softwarewerkzeugen verifizieren.
- können beurteilen, welcher logische Formalismus und welcher Kalkül sich zur Formalisierung und zum Beweis eines Sachverhalts eignet

Inhalt

Logikbasierte Methoden spielen in der Informatik in zwei Bereichen eine wesentliche Rolle: (1) zur Entwicklung, Beschreibung und Analyse von IT-Systemen und (2) als Komponente von IT-Systemen, die diesen die Fähigkeit verleiht, die umgebende Welt zu analysieren und Wissen darüber abzuleiten.

Dieses Modul

- · führt in die Grundlagen formaler Logik ein und
- · behandelt die Anwendung logikbasierter Methoden
 - zur Modellierung und Formalisierung
 - · zur Ableitung (Deduktion),
 - zum Beweisen und Analysieren

von Systemen und Strukturen bzw. deren Eigenschaften.

Mehrere verschiedene Logiken werden vorgestellt, ihre Syntax und Semantik besprochen sowie dazugehörige Kalküle und andere Analyseverfahren eingeführt. Zu den behandelten Logiken zählen insbesondere die klassische Aussagen- und Prädikatenlogik sowie Temporallogiken wie LTL oder CTL.

Die Frage der praktischen Anwendbarkeit der vorgestellten Logiken und Kalküle auf Probleme der Informatik spielt in dieser Vorlesung eine wichtige Rolle. Der Praxisbezug wird insbesondere auch durch praktische Übungen (Praxisaufgaben) hergestellt, im Rahmen derer Studierende die Anwendung aktueller Werkzeuge (z.B. des interaktiven Beweisers KeY) auf praxisrelevante Problemstellungen (z.B. den Nachweis von Programmeigenschaften) erproben können.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt 180h.

Der Aufwand setzt sich zusammen aus:

34,5h = 23 * 1,5hVorlesung (Präsenz)

10,5h = 7 * 1,5h Übungen (Präsenz)

60h Vor- und Nachbereitung, insbes. Bearbeitung der Übungsblätter

40h Bearbeitung der Praxisaufgaben

35h Klausurvorbereitung

Empfehlungen

4.18 Modul: Fortgeschrittene Künstliche Intelligenz [M-INFO-106299]

Verantwortung: Prof. Dr. Jan Niehues **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-INFO-112768	Fortgeschrittene Künstliche Intelligenz	6 LP	Niehues

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden kennen die relevanten Elemente eines technischen kognitiven Systems und deren Aufgaben.
- Die Studierenden verstehen die Algorithmen und Methoden der KI um kognitive Systeme zu modellieren.
- Die Studenten sind in der Lage, die unterschiedlichen Teilkomponeten eines System zu entwickeln und zu analysieren.
- Die Studierenden können dieses Wissen auf neue Anwendungen übertragen, sowie verschiedene Methoden analysieren und vergleichen.

Inhalt

Durch die Erfolge in der Forschung sind zunehmend KI System in unseren Alltag integriert. Dies sind beispielsweise Systeme, die Sprache verstehen und generieren können oder Bilder und Videos analysieren können. Darüber hinaus sind KI-Systeme essentiell in der Robotik, um die nächste Generation intelligenter Roboter entwickeln zu können.

Basierend auf dem Wissen der Vorlesung "Einführung in der KI" erlernen die Studenten diese Systeme zu verstehen, entwickeln und evaluieren. .

Um den Studenten dieses Wissen näherzubringen, ist die Vorlesung in 4 Teile gegliedert. Zunächst werden die Methoden der Perzeption mittels verschiedener Modalitäten behandelt. Im zweiten Teil werden fortgeschrittene Methoden des Lernens, die über das überwachte Lernen hinausgehen, behandelt. Anschließend werden Methoden behandelt, die für die Repräsentation von Wissen in KI-Systemen benötigt werden. Abschließend werden Methoden vorgestellt, die es KI-Systemen ermöglichen Inhalte zu generieren.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung, 6 LP. 6 LP entspricht ca. 180 Stunden, davon

ca. 45 Std. Vorlesungsbesuch

ca. 15 Std. Übungsbesuch

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

4.19 Modul: Grundbegriffe der Informatik [M-INFO-101170]

Verantwortung: Dr. rer. nat. Mattias Ulbrich **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-101965	Grundbegriffe der Informatik Übungsschein	0 LP	Ulbrich	
T-INFO-101964	Grundbegriffe der Informatik	6 LP	Ulbrich	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Die Studierenden kennen grundlegende Definitionsmethoden und sind in der Lage, entsprechende Definitionen zu lesen und zu verstehen.
- · Sie kennen den Unterschied zwischen Syntax und Semantik.
- Die Studierenden kennen die grundlegenden Begriffe aus diskreter Mathematik und Informatik und sind in der Lage sie richtig zu benutzen, sowohl bei der Beschreibung von Problemen als auch bei Beweisen

Inhalt

- · Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit
- · Berechnungskomplexität, "schwere" Probleme
- · O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion Hüllenbildung
- Relationen und Funktionen
- Graphen
- · Syntax für Aussagenlogik und Prädikatenlogik, Grundlagen ihrer Semantik

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung: $15 \times 1.5 \text{ h} = 22.50 \text{ h}$ Uebung: $15 \times 0.75 \text{ h} = 11.25 \text{ h}$ Tutorium: $15 \times 1.5 \text{ h} = 22.50 \text{ h}$ Nachbereitung: $15 \times 2 \text{ h} = 30.00 \text{ h}$

Bearbeitung von Aufgaben: 14 x 3 h = 42.00 h Klausurvorbereitung: 1 x 49.75 h = 49.75 h

Klausur: $2 \times 1 \, h = 2.00 \, h$

Summe 180 h

Lehr- und Lernformen

2 SWS Vorlesung, 1 SWS Übung, 2 SWS Tutotium

4.20 Modul: Grundlagen der Künstlichen Intelligenz [M-INFO-106014]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-112194	Grundlagen der Künstlichen Intelligenz	5 LP	Friederich, Neumann

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden kennen die grundlegenden Konzepte der klassischen künstlichen Intelligenz und des maschinellen Lernens.
- Die Studierenden verstehen die Algorithmen und Methoden der klassischen KI, und können diese sowohl abstrakt beschreiben als auch praktisch implementieren und anwenden.
- Die Studierenden verstehen die Methoden des maschinellen Lernens und dessen mathematische Grundlagen. Sie kennen Verfahren aus den Bereichen des überwachten und unüberwachten Lernens sowie des bestärkenden Lernens, und können diese praktisch einsetzen.
- Die Studierenden kennen und verstehen grundlegende Anwendungen von Methoden des maschinellen Lernens in den Bereichen Computer Vision, Natural Language Processing und Robotik.
- Die Studierenden können dieses Wissen auf neue Anwendungen übertragen, sowie verschiedene Methoden analysieren und vergleichen.

Inhalt

Dieses Modul behandelt die theoretischen und praktischen Aspekte der künstlichen Intelligenz, incl. Methoden der klassischen KI (Problem Solving & Reasoning), Methoden des maschinellen Lernens (überwacht und unüberwacht), sowie deren Anwendung in den Bereichen computer vision, natural language processing, sowie der Robotik.

Überblick

Einführung

- Historischer Überblick und Entwicklungen der KI und des maschinellen Lernens, Erfolge, Komplexität, Einteilung von KI-Methoden und Systemen
- · Lineare Algebra, Grundlagen, Lineare Regression

Teil 1: Problem Solving & Reasoning

- Problem Solving, Search, Knowledge, Reasoning & Planning
- Symbolische und logikbasierte KI
- · Graphische Modelle, Kalman/Bayes Filter, Hidden Markov Models (HMMs), Viterbi
- Markov Decision Processes (MDPs)

Teil 2: Machine Learning - Grundlagen

- Klassifikation, Maximum Likelihood, Logistische Regression
- Deep Learning, MLPs, Back-Propagation
- Over/Underfitting, Model Selection, Ensembles
- Unsupervised Learning, Dimensionalitätsreduktion, PCA, (V)AE, k-means clustering
- Density Estimation, Gaussian Mixture models (GMMs), Expectation Maximization (EM)

Teil 3: Machine Learning - Vertiefung und Anwendung

- · Computer Vision, Convolutions, CNNs
- Natural Language Processing, RNNs, Encoder/Decoder
- · Robotik, Reinforcement Learning

Arbeitsaufwand

2 SWS Vorlesung + 1 SWS Übung

8 Stunden Arbeitsaufwand pro Woche, plus 30 Stunden Klausurvorbereitung: 150 Stunden

Empfehlungen

LA İ

4.21 Modul: Heterogene parallele Rechensysteme [M-INFO-100822]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-101359	Heterogene parallele Rechensysteme	3 LP	Karl	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Die Studierenden sollen vertiefende Kenntnisse über die Architektur und die Operationsprinzipien von parallelen, heterogenen und verteilten Rechnerstrukturen erwerben.
- Sie sollen die Fähigkeit erwerben, parallele Programmierkonzepte und Werkzeuge zur Analyse paralleler Programme anzuwenden.
- Sie sollen die Fähigkeit erwerben, anwendungsspezifische und rekonfigurierbare Komponenten einzusetzen.
- Sie sollen in die Lage versetzt werden, weitergehende Architekturkonzepte und Werkzeuge für parallele Rechnerstrukturen entwerfen zu können.

Inhalt

Moderne Rechnerstrukturen nützen den Parallelismus in Programmen auf allen Systemebenen aus. Darüber hinaus werden anwendungsspezifische Koprozessoren und rekonfigurierbare Bausteine zur Anwendungsbeschleunigung eingesetzt. Aufbauend auf den in der Lehrveranstaltung Rechnerstrukturen vermittelten Grundlagen, werden die Architektur und Operationsprinzipien paralleler und heterogener Rechnerstrukturen vertiefend behandelt. Es werden die parallelen Programmierkonzepte sowie die Werkzeuge zur Erstellung effizienter paralleler Programme vermittelt. Es werden die Konzepte und der Einsatz anwendungsspezifischer Komponenten (Koprozessorkonzepte) und rekonfigurierbarer Komponenten vermittelt. Ein weiteres Themengebiet ist Grid-Computing und Konzepte zur Virtualisierung.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 30 h
- 2. Vor-/Nachbereitung derselbigen 30 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 30

Empfehlungen

4.22 Modul: Informationssicherheit [M-INFO-106015]

Verantwortung: Prof. Dr. Jörn Müller-Quade **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile					
T-INFO-112195	Informationssicherheit	5 LP	Müller-Quade		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der /die Studierende

- Kenntnis der Grundlagen und Grundbegriffe von Kryptographie und IT-Sicherheit
- Kenntnis von Bedrohungen, Angreifermodellen, Schutzzielen und Sicherheitsdiensten
- Verständnis von Techniken und Sicherheitsprimitiven zur Erlangung der Schutzziele (One-Time-Pad und Strom-Chiffren, Pseudozufall, Pseudozufallspermutationen, Block-Chiffren und ihre Operationsmodi, Public-Key-Verschlüsselung, Hash-Funktionen, Message-Authentication-Codes)
- Einblick in wissenschaftliche Bewertungs- und Analysemethodik von IT-Sicherheit (Spielbasierte Formalisierung von Vertraulichkeit und Integrität, Security Notions, informationstheoretische Sicherheit vs. semantische Sicherheit)
- Grundlagen der Sicherheitsprotokolle (Schlüsselaustausch, Authentisierung, Sicherheit im Netz: IPsec und TLS)
- Einblick in weitere Ansätze der IT-Sicherheit (Zugangskontrolle, reaktive Sicherheit und Angriffserkennung)
- Verständnis von Daten-Arten, Personenbezug, rechtliche und technische Grundlagen des Datenschutzes
- Grundlagen der Systemsicherheit (Spam und Phishing, Schwachstellen in Software und Malware, Sicherheit von Web-Anwendungen, Benutzberkeit zur Erhöhung der Sicherheit)
- Verständnis des IT-Sicherheitsmanagements und seiner Zertifizierungen (IT-Security Lifecycle, BSI Grundschutz/Common Criteria)

Inhalt

- Grundbegriffe, Grundlagen und historischer Überblick
- · Mathematische Grundlagen (Diskrete Wahrscheinlichkeiten, Zahlentheorie) und Methoden der IT-Sicherheit
- · Symmetrische Verschlüsselung, Pseudozufall
- Block-Chiffren und Operationsmodi
- Techniken der Integritätssicherung (Hash-Funktionen, MACs, Schlüsselaustausch)

Asymmetrische Verschlüsselung

- · Authentisierung mit Authentisierungsfaktoren und Zugangskontrolle
- Systemsicherheit (Schwachstellen)
- Systemsicherheit (Malware)
- Grundlagen Netzsicherheit (IPsec, HTTPS, TLS)
- Reaktive Sicherheit (Angriffserkennung)
- Sicherheit von Web-Anwendungen
- Recht auf Datenschutz, Technischer Datenschutz, Anonymität im Netz, Daten-Anonymisierung/Veröffentlichungskontrolle
- IT-Sicherheitsmanagement und Zusammenfassung

Arbeitsaufwand

Präsenzzeit in der Vorlesung und Übung: 42 h

Vor-/Nachbereitung derselbigen: 42 h

Prüfungsvorbereitung und Präsenz in selbiger: 66 h

Empfehlungen

Vorkenntnisse aus Theoretische Grundlagen der Informatik und Betriebssysteme werden dringend empfohlen.

Literatur

- Katz/Lindell: Introduction to Modern Cryptography (Chapman & Hall)
 Schäfer/Roßberg: Netzsicherheit (dpunkt)
 Anderson: Security Engineering (Wiley, auch online)

- Stallings/Brown: Computer Security (Pearson)
- Pfleeger, Pfleeger, Margulies: Security in Computing (Prentice Hall)

4.23 Modul: Internet of Everything [M-INFO-100800]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4ZehntelnotenJedes Wintersemester1 SemesterDeutsch41

| Pflichtbestandteile | T-INFO-101337 | Internet of Everything | 4 LP | Zitterbart

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Studierende

- · kennen die Herausforderungen des Internet of Everything (IoE) sowohl aus technischer wie auch aus rechtlicher Sicht
- kennen und verstehen die Gefahren für die Privatsphäre der Nutzer im IoE sowie grundlegende Mechanismen und Protokolle um diese zu schützen
- beherrschen die grundlegenden Architekturen und Protokolle aus dem Bereich drahtlose Sensornetze und Internet der Dinge.

Studierende kennen die Plattformen und Anwendungen des Internet of Everything. Studierende haben ein Verständnisses für Herausforderungen beim Entwurf von Protokollen und Anwendungen für das IoE.

Studierende kennen und verstehen die Gefahren für die Privatsphäre der Nutzer des zukünftigen IoE. Sie kennen Protokolle und Mechanismen um zukünftige Anwendungen zu ermöglichen, beispielsweise Smart Metering und Smart Traffic, und gleichzeitig die Privatsphäre der Nutzer zu schützen.

Studierende kennen und verstehen klassische Sensornetz-Protokolle und Anwendungen, wie beispielsweise Medienzugriffsverfahren, Routing Protokolle, Transport Protokolle sowie Mechanismen zur Topologiekontrolle. Die Studierenden kennen und verstehen das Zusammenspiel einzelner Kommunikationsschichten und den Einfluss auf beispielsweise den Energiebedarf der Systeme.

Studierende kennen Protokolle für das Internet der Dinge wie beispielsweise 6LoWPAN, RPL, CoAP und DICE. Die Studierenden verstehen die Herausforderungen und Annahmen, die zur Standardisierung der Protokolle geführt haben.

Die Studierenden haben ein grundlegendes Verständnis von

Sicherheitstechnologien im IoE. Sie kennen typische

Schutzziele und Angriffe, sowie Bausteine und Protokolle um die Schutzziele umzusetzen.

Inhalt

Die Vorlesung behandelt ausgewählte Protokolle, Architekturen, sowie Verfahren und Algorithmen die für das IoE wesentlich sind. Dies schließt neben klassischen Themen aus dem Bereich der drahtlosen Sensor-Aktor-Netze wie z.B. Medienzugriff und Routing auch neue Herausforderungen und Lösungen für die Sicherheit und Privatheit der übertragenen Daten im IoE mit ein. Ebenso werden gesellschaftlich und rechtlich relevante Aspekte angesprochen.

Arbeitsaufwand

Vorlesung mit 2 SWS plus Nachbereitung/Prüfungsvorbereitung, 4 LP.

4 LP entspricht ca. 120 Arbeitsstunden, davon

ca. 30 Std. Vorlesungsbesuch

ca. 60 Std. Vor-/Nachbereitung

ca. 30 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung

4.24 Modul: IT-Sicherheit [M-INFO-106315]

Verantwortung: Prof. Dr. Hannes Hartenstein

Prof. Dr. Jörn Müller-Quade Prof. Dr. Thorsten Strufe

TT-Prof. Dr. Christian Wressnegger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)

Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte 6 Notenskala Turnus 2ehntelnoten Jedes Winterseme	Dauer er 1 Semester		vel Version 4 2	
---	------------------------	--	--------------------	--

Pflichtbestandteile					
T-INFO-112818	IT-Sicherheit	6 LP	Hartenstein, Müller- Quade, Strufe, Wressnegger		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der /die Studierende

- hat vertiefte Kenntnisse von Kryptographie und IT-Sicherheit
- kennt und versteht anspruchsvollen Techniken und Sicherheitsprimitive zur Erlangung der Schutzziele
- kennt und versteht wissenschaftliche Bewertungs- und Analysemethodik von IT-Sicherheit (spielbasierte Formalisierung von Vertraulichkeit und Integrität, Security und Anonymity Notions)
- hat ein gutes Verständnis von Daten-Arten, Personenbezug, rechtlichen und technischen Grundlagen des Datenschutzes
- kennt und versteht die Grundlagen der Systemsicherheit (Buffer Overflow, Return-oriented Programming, ...)
- kennt verschiedene Mechanismen für anonyme Kommunikation (TOR, Nym, ANON) und kann ihre Wirksamkeit beurteilen
- kennt und versteht Blockchains und deren Konsens-Mechanismen und kann ihre Stärken und Schwächen beurteilen

Inhalt

Dieses Stammmodul vertieft unterschiedliche Themenfelder der IT-Sicherheit. Hierzu gehören insbesondere:

- Kryptographie mit elliptischen Kurven
- Threshold-Kryptographie
- Zero-Knowledge Beweise
- Secret-Sharing
- Sichere Mehrparteienberechnung und homomorphe Verschlüsselung
- Methoden der IT-Sicherheit (Spielbasierte Analysen und das UC Modell)
- Krypto-Währungen und Konsens durch Proof-of-Work/Stake
- · Anonymität im Internet, Anonymität bei Online-Payments
- Privatsphären-konformes maschinelles Lernen
- Sicherheit des maschinellen Lernens
- Systemsicherheit und Exploits
- Bedrohungsmodellierung und Quantifizierung von IT-Sicherheit

Arbeitsaufwand

Präsenzzeit in der Vorlesung und Übung: 56 h

Vor-/Nachbereitung derselbigen: 56 h

Prüfungsvorbereitung und Präsenz in selbiger: 68 h

Empfehlungen

Der Besuch der Vorlesung Informationssicherheit wird empfohlen.

Literatur

- *Katz/Lindell: Introduction to Modern Cryptography (Chapman & Hall)
 *Schäfer/Roßberg: Netzsicherheit (dpunkt)
 *Anderson: Security Engineering (Wiley, auch online)

- Stallings/Brown: Computer Security (Pearson)
- Pfleeger, Pfleeger, Margulies: Security in Computing (Prentice Hall)

4.25 Modul: Mensch-Maschine-Interaktion [M-INFO-100729]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul) Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-INFO-101266	Mensch-Maschine-Interaktion	6 LP	Beigl		
T-INFO-106257	Übungsschein Mensch-Maschine-Interaktion	0 LP	Beigl		

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Nach Abschluss der Veranstaltung können die Studierenden

- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Inhalt

Themenbereiche sind:

- 1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
- 2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte,
- 3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
- 4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
- 5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
- 6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten).
- 7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Besuch der Vorlesung 15 x 90 min = 22 h 30 min Präsenzzeit: Besuch der Übung 8x 90 min =12 h 00 min Vor- / Nachbereitung der Vorlesung 15 x 150 min = 37 h 30 min Vor- / Nachbereitung der Übung 8x 360min =48h 00min Foliensatz/Skriptum 2x durchgehen 2 x 12 h =24 h 00 min Prüfung vorbereiten = 36 h 00 min

SUMME = 180h 00 min

Empfehlungen Siehe Teilleistung

4.26 Modul: Mikroprozessoren I [M-INFO-101183]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-101972	Mikroprozessoren I	3 LP	Karl

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden sollen detaillierte Kenntnisse über den Aufbau und die Organisation von Mikroprozessorsystemen in den verschiedenen Einsatzgebieten erwerben.
- Die Studierenden sollen die Fähigkeit erwerben, Mikroprozessoren für verschiedene Einsatzgebiete bewerten und auswählen zu können.
- Die Studierenden sollen die Fähigkeit erwerben, systemnahe Funktionen programmieren zu können.
- Die Studierenden sollen Architekturmerkmale von Mikroprozessoren zur Beschleunigung von Anwendungen und Systemfunktionen ableiten, bewerten und entwerfen können.
- Die Studierenden sollen die Fähigkeiten erwerben, Mikroprozessorsysteme in strukturierter und systematischer Weise entwerfen zu können.

Inhalt

Das Modul befasst sich im ersten Teil mit Mikroprozessoren, die in Desktops und Ser vern eingesetzt werden. Ausgehend von den grundlegenden Eigenschaften dieser Rechner und dem Systemaufbau werden die Architekturmerkmale von Allzweck- und Hochleistungs-Mikroprozessoren vermittelt. Insbesondere sollen die Techniken und Mechanismen zur Unterstützung von Betriebssystemfunktionen, zur Beschleunigung durch Ausnützen des Parallelismus auf Maschinenbefehlsebene und Aspekte der Speicherhierarchie vermittelt werden.

Der zweite Teil behandelt Mikroprozessoren, die in eingebetteten Systemen eingesetzt werden. Es werden die grundlegenden Eigenschaften von Microcontrollern vermittelt. Eigenschaften von Mikroprozessoren, die auf spezielle Einsatzgebiete zugeschnitten sind, werden ausführlich behandelt.

Arbeitsaufwand

(2 SWS + 1,5 x 2 SWS) x 15 + 15 h Klausurvorbereitung = 90 h = 3 ECTS 🗟

4.27 Modul: Modul Masterarbeit - Informatik [M-INFO-104807]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahl Zertifikat oder Abschluss mit Masterarbeit)

Leistungspunkte
15Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-INFO-109822	Masterarbeit - Informatik	15 LP	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 65 Leistungspunkte erbracht worden sein:
 - Wissenschaftliches Fach Informatik
 - Wissenschaftliches Fach Informatik

Qualifikationsziele

- Die Studierenden bearbeiten in der Masterarbeit ein Thema der Informatik selbständig, wissenschaftlich auf dem Stand der Forschung.
- Die Studierenden zeigen dabei ein umfassendes Verständnis für die das Thema betreffenden wissenschaftlichen Methoden und Verfahren.
- Die Studierenden wählen geeignete Methoden aus und setzen diese korrekt ein. Wenn notwendig, passen sie diese entsprechend an oder entwickelt sie weiter.
- · Die Studierenden vergleichen ihre Ergebnisse kritisch mit anderen Ansätzen und evaluieren ihre Ergebnisse.
- Die Studierenden bilden sich eine wissenschaftliche Meinung und k\u00f6nnen diese und ihre Ergebnisse in Diskussionen pre\u00e4sentieren und vertreten.

Inhalt

- Die Masterarbeit soll zeigen, dass die Studierenden in der Lage sind, ein Problem aus ihrem Fach selbständig und in begrenzter Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen zu bearbeiten.
- Die Bearbeitungszeit beträgt sechs Monate. Auf begründeten Antrag der Studierenden kann der Prüfungsausschuss die Bearbeitungszeit um höchstens drei Monate verlängern. Die Masterarbeit kann im Einvernehmen mit dem Betreuer auch auf Englisch geschrieben werden.
- Soll die Masterarbeit außerhalb der Fakultät angefertigt werden, bedarf dies der Genehmigung des Prüfungsausschusses.
- Die Masterarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag der einzelnen Studierenden deutlich unterscheidbar ist.
- Bei Abgabe der Masterarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbständig verfasst haben und keine anderen, als die von ihnen angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Institut für Technologie (KIT) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben.
- Der Zeitpunkt der Ausgabe des Themas und der Zeitpunkt der Abgabe der Masterarbeit sind aktenkundig zu machen.

4.28 Modul: Programmieren [M-INFO-101174]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-INFO-101967	Programmieren Übungsschein	0 LP	Koziolek, Reussner		
T-INFO-101531	Programmieren	5 LP	Koziolek, Reussner		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende

- beherrschen grundlegende Strukturen und Details der Programmiersprache Java, insbesondere Kontrollstrukturen, einfache Datenstrukturen, Umgang mit Objekten;
- beherrschen die Implementierung nichttrivialer Algorithmen sowie grundlegende Programmiermethodik und elementare Softwaretechnik:
- haben die Fähigkeit zur eigenständigen Erstellung mittelgroßer, lauffähiger Java-Programme, die einer automatisierten Qualitätssicherung (automatisches Testen anhand einer Sammlung geheimer Testfälle, Einhaltung der Java Code Conventions, Plagiatsprüfung) standhalten.

Studierende beherrschen den Umgang mit Typen und Variablen, Konstruktoren und Methoden, Objekten und Klassen, Interfaces, Kontrollstrukturen, Arrays, Rekursion, Datenkapselung, Sichtbarkeit und Gültigkeitsbereichen, Konvertierungen, Containern und abstrakten Datentypen, Vererbung und Generics, Exceptions. Sie verstehen den Zweck dieser Konstrukte und können beurteilen, wann sie eingesetzt werden sollen. Sie kennen erste Hintergründe, wieso diese Konstrukte so in der Java-Syntax realisiert sind.

Studierende können Programme von ca 500 – 1000 Zeilen nach komplexen, präzisen Spezifikationen entwickeln; dabei können sie nichttriviale Algorithmen und Programmiermuster anwenden und (nicht-grafische) Benutzerinteraktionen realisieren. Studierende können Java-Programme analysieren und beurteilen, auch nach methodische Kriterien.

Studierende beherrschen grundlegende Kompetenzen zur Arbeitsstrukturierung und Lösungsplanung von Programmieraufgaben.

Inhalt

- Objekte und Klassen
- Typen, Werte und Variablen
- Methoden
- Kontrollstrukturen
- Rekursion
- Referenzen, Listen
- Vererbung
- · Ein/-Ausgabe
- Exceptions
- Programmiermethodik
- Implementierung elementarer Algorithmen (z.B. Sortierverfahren) in Java

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung mit 2 SWS und Übung 2 SWS, plus zwei Abschlussaufgaben, 5 LP.

- 5 LP entspricht ca. 150 Arbeitsstunden, davon
- ca. 30 Std. Vorlesungsbesuch,
- ca. 30 Std. Übungsbesuch,
- ca. 30 Std. Bearbeitung der Übungsaufgaben,
- ca. 30 Std für jede der beiden Abschlussaufgaben.

4.29 Modul: Proseminar [M-INFO-101181]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-INFO-101971	Proseminar	3 LP	Beckert

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Studierende können grundlegende Themen der Informatik (in einem speziellen Fachgebiet) wissenschaftlich behandeln.
- Dabei können Studierende die Schritte von der einfache Literaturrecherche bis auf die Aufbereitung der Ergebnisse in schriftlicher und mündlicher Form anwenden.
- Studierende sind in der Lage Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Zusammenhänge in kurzer Form zu kommunizieren.
- Studierende können wissenschaftliche Ergebnisse schriftlich und mündlich wiedergeben.
- Die Studierenden sind mit dem DFG-Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" vertraut und wenden diese Leitlinien erfolgreich bei der Erstellung Ihrer wissenschaftlichen Arbeit an.

Inhalt

Das Proseminarmodul behandelt in den angebotenen Proseminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.

Das Proseminar bereitet für die Bachelorarbeit vor.

Arbeitsaufwand

Der Arbeitsaufwand beträgt i.d.R. 90 Stunden. Davon sind ca. 30 Stunden zur Vor- und Nachbereitung der Präsenzveranstatlungen, ca. 20 Stunden für die schriftliche Ausarbeitung, ca. 20 Stunden für die Literaturrecherche und ca. 20 Stunden für den eigenen Vortrag.

Empfehlungen

Siehe Teilleistung.

4.30 Modul: Rechnerorganisation [M-INFO-103179]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-103531	Rechnerorganisation	6 LP	Karl

Erfolgskontrolle(n)

Siehe Teillestung.

Voraussetzungen

Siehe Teillseitung.

Qualifikationsziele

Die Studierenden sollen in die Lage versetzt werden,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben.
- den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können
- einen Rechner aus Grundkomponenten aufbauen zu können.

Inhalt

Der Inhalt der Lehrveranstaltung umfasst die Grundlagen des Aufbaus und der Organisation von Rechnern; die Befehlssatzarchitektur verbunden mit der Diskussion RISC – CISC; Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmnisse und Methoden zur Auflösung von Pipeline-Konflikten; Speicherkomponenten, Speicherorganisation, Cache-Speicher; Ein-/Ausgabe-System und Schnittstellenbausteine; Interrupt-Verarbeitung; Bus-Systeme; Unterstützung von Betriebssystemfunktionen: virtuelle Speicherverwaltung, Schutzfunktionen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieser Lehrveranstaltung beträgt ca. 180 Stunden (6 Credits).

Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Präsenzzeit in Vorlesungen, Übungen: 120 h Vor-/Nachbereitung derselbigen: 30 h

Klausurvorbereitung und Präsenz in selbiger: 30 h

4.31 Modul: Rechnerstrukturen [M-INFO-100818]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-INFO-101355	Rechnerstrukturen	6 LP	Karl

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende ist in der Lage,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben.
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können,
- Verfahren und Methoden zur Bewertung und Vergleich von Rechensystemen anwenden zu können,
- grundlegendes Verständnis über die verschiedenen Formen der Parallelverarbeitung in Rechnerstrukturen zu erwerben.

Insbesondere soll die Lehrveranstaltung die Voraussetzung liefern, vertiefende Veranstaltungen über eingebettete Systeme, moderne Mikroprozessorarchitekturen, Parallelrechner, Fehlertoleranz und Leistungsbewertung zu besuchen und aktuelle Forschungsthemen zu verstehen.

Inhalt

Der Inhalt umfasst:

- · Einführung in die Rechnerarchitektur
- Grundprinzipien des Rechnerentwurfs: Kompromissfindung zwischen Zielsetzungen, Randbedingungen, Gestaltungsgrundsätzen und Anforderungen
- Leistungsbewertung von Rechensystemen
- Parallelismus auf Maschinenbefehlsebene: Superskalartechnik, spekulative Ausführung, Sprungvorhersage, VLIW-Prinzip, mehrfädige Befehlsausführung
- Parallelrechnerkonzepte, speichergekoppelte Parallelrechner (symmetrische Multiprozessoren, Multiprozessoren mit verteiltem gemeinsamem Speicher), nachrichtenorientierte Parallelrechner, Multicore-Architekturen, parallele Programmiermodelle
- Verbindungsnetze (Topologien, Routing)
- · Grundlagen der Vektorverarbeitung, SIMD, Multimedia-Verarbeitung
- · Energie-effizienter Entwurf
- Grundlagen der Fehlertoleranz, Zuverlässigkeit, Verfügbarkeit, Sicherheit

Arbeitsaufwand

((4 + 1,5*4)*15 + 15)/30 = 165/30 = 5,5 = 6 ECTS

Empfehlungen

Siehe Teilleistung

4.32 Modul: Robotik I - Einführung in die Robotik [M-INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

LeistungspunkteNotenskala
6TurnusDauer
1 SemesterSprache
Deutsch/EnglischLevel
4Version
3

Pflichtbestandteile			
T-INFO-108014	Robotik I - Einführung in die Robotik	6 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende sind in der Lage, die vorgestellten Konzepte auf einfache und realistische Aufgaben aus der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Robotermodellierung relevanten mathematischen Konzepte. Weiterhin beherrschen Studierende die kinematische und dynamische Modellierung von Robotersystemen, sowie die Modellierung und den Entwurf einfacher Regler. Die Studierenden kennen die algorithmischen Grundlagen der Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen der Robotik anwenden. Sie kennen Algorithmen aus dem Bereich der Bildverarbeitung und sind in der Lage, diese auf Problemstellungen der Robotik anzuwenden. Sie können Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen. Die Studierenden besitzen Kenntnisse über intuitive Programmierverfahren für Roboter und kennen Verfahren zum Programmieren und Lernen durch Vormachen.

Inhalt

Die Vorlesung vermittelt einen Überblick über die Grundlagen der Robotik am Beispiel von Industrierobotern, Service-Robotern und autonomen humanoiden Robotern. Dabei wird ein Einblick in alle relevanten Themenbereiche gegeben. Dies umfasst Methoden und Algorithmen zur Modellierung von Robotern, Regelung und Bewegungsplanung, Bildverarbeitung und Roboterprogrammierung. Zunächst werden mathematische Grundlagen und Methoden zur kinematischen und dynamischen Robotermodellierung, Trajektorienplanung und Regelung sowie Algorithmen der kollisionsfreien Bewegungsplanung und Greifplanung behandelt. Anschließend werden Grundlagen der Bildverarbeitung, der intuitiven Roboterprogrammierung insbesondere durch Vormachen und der symbolischen Planung vorgestellt.

In der Übung werden die theoretischen Inhalte der Vorlesung anhand von Beispielen weiter veranschaulicht. Studierende vertiefen ihr Wissen über die Methoden und Algorithmen durch eigenständige Bearbeitung von Problemstellungen und deren Diskussion in der Übung. Insbesondere können die Studierenden praktische Programmiererfahrung mit in der Robotik üblichen Werkzeugen und Software-Bibliotheken sammeln.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung, 6 LP.

6 LP entspricht ca. 180 Stunden, davon

ca. 45 Std. Vorlesungsbesuch

ca. 15 Std. Übungsbesuch

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

4.33 Modul: Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte [M-INFO-102374]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch42

 Pflichtbestandteile

 T-INFO-104742
 Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte
 3 LP Stiefelhagen

Erfolgskontrolle(n)

siehe Teilleistung

Voraussetzungen

siehe Teilleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Das Modul M-INFO-105884 - Seminar: Digitale Barrierefreiheit und Assistive Technologien darf nicht begonnen worden sein.

Qualifikationsziele

Studierende können

- eine Literaturrecherche ausgehend von einem vorgegebenen Thema durchführen, die relevante Literatur identifizieren, auffinden, bewerten und schließlich auswerten.
- ihre Seminararbeit (und später die Bachelor-/Masterarbeit) mit minimalem Einarbeitungsaufwand anfertigen und dabei Formatvorgaben berücksichtigen, wie sie von allen Verlagen bei der Veröffentlichung von Dokumenten vorgegeben werden.
- Präsentationen im Rahmen eines wissenschaftlichen Kontextes ausarbeiten. Dazu werden Techniken vorgestellt, die es ermöglichen, die vorzustellenden Inhalte auditoriumsgerecht aufzuarbeiten und vorzutragen.
- die Ergebnisse der Recherchen in schriftlicher Form derart präsentieren, wie es im Allgemeinen in wissenschaftlichen Publikationen der Fall ist.

Die Studierenden sind mit dem DFG-Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" vertraut und wenden diese Leitlinien erfolgreich bei der Erstellung Ihrer wissenschaftlichen Arbeit an.

Inhalt

Weltweit gibt es nach Angaben der Weltgesundheitsorganisation circa 285 Million Menschen mit Sehschädigungen, davon circa 39 Millionen Menschen, die blind sind. Der teilweise oder vollständige Verlust des Sehvermögens schränkt Blinde und Sehbehinderte in erheblichem Maße in Ihrem Arbeits- und Sozialleben ein. Sich ohne fremde Hilfe im öffentlichen Raum zu orientieren und fortzubewegen, gestaltet sich schwierig: Gründe hierfür sind Probleme bei der Wahrnehmung von Hindernissen und Landmarken, sowie die daraus resultierende Angst vor Unfällen und Orientierungsschwierigkeiten. Weitere Probleme im Alltagsleben sind: das Lesen von Texten, die Erkennung von Geldscheinen, von Nahrungsmitteln, Kleidungstücken oder das Wiederfinden von Gegenständen im Haushalt.

Zur Unterstützung können Blinde und Sehbehinderte bereits auf eine Reihe von technischen Hilfsmitteln zurückgreifen. So können digitalisierte Texte durch Sprachausgabe oder Braille-Ausgabegeräte zugänglich gemacht werden. Es gibt auch verschiedene, speziell für Blinde hergestellte Geräte, wie "sprechende" Uhren oder Taschenrechner. Das wichtigste Hilfsmittel zur Verbesserung der Mobilität ist mit großem Abstand der Blindenstock. Zwar wurden in den vergangenen Jahren auch einige elektronische Hilfsmittel zur Hinderniserkennung oder Orientierungsunterstützung entwickelt. Diese bieten aber nur eine sehr eingeschränkte Funktionalität zu einem relativ hohen Preis, und sind daher eher selten im Einsatz.

Das Seminar behandelt aktuelle Forschungsansätze zu IT-basierten Assistiven Technologien (AT) für Sehgeschädigte.

Möglichen Themen beinhalten:

- IT-basierte Assistive Technologien (AT) für den Alltag, für die Mobilitätsunterstützung und den Informationszugang
- Barrierefreie Softwareentwicklung
- · Aktuelle Forschungsansätze im Bereich AT
- Nutzung von Methoden des Maschinellen Sehens (Computer Vision) zur Entwicklung neuer AT

Aktuelle Informationen finden Sie unter http://cvhci.anthropomatik.kit.edu/

Anmerkungen

ACHTUNG Titeländerung > M-INFO-105884 - Seminar: Digitale Barrierefreiheit und Assistive Technologien

Arbeitsaufwand

(6 Vorlesungswochen pro Semester) x (2 SWS + 1,5 x 2 SWS Vor-/Nacharbeit) = 30 h 30h Vortragsrecherche, -vorbereitung 30h schriftliche Ausarbeitung = 90h = 3 ECTS

4.34 Modul: Seminar: Digitale Barrierefreiheit und Assistive Technologien [M-INFO-105884]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	4	1

Pflichtbestandteile			
T-INFO-111832	Seminar: Digitale Barrierefreiheit und Assistive Technologien	3 LP	Stiefelhagen

Erfolgskontrolle(n)

siehe Teilleistung

Voraussetzungen

siehe Teilleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Das Modul M-INFO-102374 - Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte darf nicht begonnen worden sein.

Qualifikationsziele

Die Studierenden erwerben Grundkenntnisse über

- Grundlagen zum Thema "Barrierefreiheit"
- Sehschädigungen, deren Ursachen und Auswirkungen
- existierende Assistive Technologien (AT) für verschiedene Anwendungsfelder wie AT für den Alltag, für die Mobilitätsunterstützung und den Informationszugang
- Richtlinien für die Entwicklung barrierefreier Webseiten und barrierefreier Softwareanwendungen
- · Barrierefreie Softwareentwicklung
- Barrierefreie Dokumenterstellung
- Aktuelle Forschungsansätze im Bereich AT
- Insbesondere über die Nutzung von Methoden des Maschinellen Sehens (Computer Vision) zur Entwicklung neuer AT
- Evaluierung von Assistiven Technologien
- Das Schreiben von Konferenzbeiträgen und deren Präsentation

Die Studierenden sind mit dem DFG-Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" vertraut und wenden diese Leitlinien erfolgreich bei der Erstellung Ihrer wissenschaftlichen Arbeit an.

Inhalt

Digitale Barrierefreiheit oder besser digitale "Zugänglichkeit" (Accessibiltiy, wie es auf Englisch heißt) ist ein Thema, das uns alle betrifft. Digital an Informationen zu kommen, von Kindesbeinen an bis ins hohe Alter. Assistive Technologien, wie Smartphones, Tablets, Smartwatches, Wearables allgemein sind ein Teil unseres Alltages geworden. Genau diese Dinge sollten von allen Menschen bedienbar und nutzbar sein. Unabhängig jeglicher Barrieren.

Aber was steckt an Details dahinter? Wie sehen Rechte und Grundlagen hierzu aus? Was muss alles getan werden, um "barrierefrei" zu sein?

Dies alles lässt sich am besten am Beispiel "Sehbehinderung" zeigen.

Weltweit gibt es nach Angaben der Weltgesundheitsorganisation ca. 285 Million Menschen mit Sehschädigungen, davon ca. 39 Millionen Menschen, die blind sind. Der teilweise oder vollständige Verlust des Sehvermögens schränkt Blinde und Sehbehinderte in erheblichem Maße in ihrem Arbeits- und Sozialleben ein. Sich ohne fremde Hilfe im öffentlichen Raum zu orientieren und fortzubewegen, gestaltet sich schwierig: Gründe hierfür sind Probleme bei der Wahrnehmung von Hindernissen und Landmarken sowie die daraus resultierende Angst vor Unfällen und Orientierungsschwierigkeiten. Weitere Probleme im Alltagsleben sind: das Lesen von Texten, die Erkennung von Geldscheinen, von Nahrungsmitteln, Kleidungstücken oder das Wiederfinden von Gegenständen im Haushalt.

Zur Unterstützung können Blinde und Sehbehinderte bereits auf eine Reihe von technischen Hilfsmitteln zurückgreifen. So können digitalisierte Texte durch Sprachausgabe oder Braille-Ausgabegeräte zugänglich gemacht werden. Es gibt auch verschiedene speziell für Blinde hergestellte Geräte. Das wichtigste Hilfsmittel zur Verbesserung der Mobilität ist mit großem Abstand der Blindenstock. In den vergangenen Jahren wurden auch einige elektronische Hilfsmittel zur Hinderniserkennung oder Orientierungsunterstützung entwickelt, diese bieten aber nur eine sehr eingeschränkte Funktionalität zu einem relativ hohen Preis und sind daher eher selten im Einsatz.

Das Seminar soll einen Einblick in Themen IT-basierter Assistiver Technologien (AT) geben und zum anderen die Teilnehmer auf das Schreiben von Konferenzartikeln zum Thema vorbereiten. Die Themenauswahl kann sich über einen größeren Bereich erstrecken. Wie zum Beispiel:

- · Rechtliche Grundlagen
- · Existierende Hilfsmittel für verschiedene Anwendungsfelder
- · AT für den Informationszugang
- Neue Schritte barrierefreier Softwareentwicklung
- Neue Grundlagen und Techniken zum barrierefreien Webdesign (Webseiten und Webanwendungen)
- · Barrierefreie Dokumente heute und morgen
- · Nutzung von Methoden des Maschinellen Sehens
- · Feedbacksysteme und deren Grundlagen
- Einblicke in aktuelle Forschungsthemen rund um das Thema "digitale Barrierefreiheit"

Arbeitsaufwand

(6 Vorlesungswochen pro Semester) x (2 SWS + 1,5 x 2 SWS Vor-/Nacharbeit) = 30 h 30h Vortragsrecherche, -vorbereitung 30h schriftliche Ausarbeitung = 90h = 3 ECTS

- · 1 SWS Meeting pro Woche
- 10 SWS Vorbereitungszeit für die Präsentationsleistung kombiniert mit weiteren 10 SWS für die Erarbeitung der schriftlichen Zusammenfassung
- die restliche Zeit soll ausschließlich für die praktische Arbeit verwendet werden

4.35 Modul: Softwaretechnik I [M-INFO-101175]

Verantwortung: Prof. Dr.-Ing. Ina Schaefer **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-INFO-101968	Softwaretechnik I	6 LP	Schaefer	
T-INFO-101995	Softwaretechnik I Übungsschein	0 LP	Schaefer	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende definiert und vergleicht die in der Vorlesung besprochenen Konzepte und Methoden und wendet diese erfolgreich an.

Inhalt

Ziel dieser Vorlesung ist es, das Grundwissen über Methoden und Werkzeuge zur Entwicklung und Wartung umfangreicher Software-Systeme zu vermitteln. Inhaltliche Themen: Projektplanung, Systemanalyse, Kostenschätzung, Entwurf, Implementierung, Qualitätssicherung, Prozessmodelle, Software-Wartung, Software-Werkzeuge, Konfigurations-Management.

Anmerkungen

Alle Studierende, die bereits im WS 2014/15 immatrikuliert waren, dürfen zwischen den Modulen **Technische Informatik** und **Softwaretechnik** wählen. Diejenigen, die bereits einen Versuch in **Technische Informatik** abgelegt haben, müssen dieses Modul abschließen.

Ab Sommersemester 2015 ist im Studiengang Bachelor Informationswirtschaft / Wirtschaftsinformatik das Modul **Softwaretechnik I** im Pflichtbereich zu prüfen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:

(4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS

4.36 Modul: Softwaretechnik II [M-INFO-100833]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)

Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte

6

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Deutsch Level 4 Version 1

Pflichtbestandteile

T-INFO-101370 Softwaretechnik II

6 LP Koziolek, Reussner

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Softwareprozesse: Die Studierenden verstehen die evolutionäre und inkrementelle Entwicklung und können die Vorteile gegenüber dem sequentiellen Vorgehen beschreiben. Sie können die Phasen und Disziplinen des Unified Process beschreiben.

Requirements Engineering: Die Studierenden können die Begriffe des Requirements Engineering beschreiben und Aktivitäten im Requirements Engineering Prozess nennen. Sie können Anforderungen nach den Facetten Art und Repräsentation klassifizieren und beurteilen. Sie können grundlegende Richtlinien zum Spezifizieren natürlichsprachlicher Anforderungen anwenden und Priorisierungsverfahren für Anforderungen beschreiben. Sie können den Zweck und die Elemente von Anwendungsfall-Modellen beschreiben. Sie können Anwendungsfälle anhand ihrer Granularität und ihrer Ziele einordnen. Sie können Anwendungsfalldiagramme und Anwendungsfälle erstellen. Sie können aus Anwendungsfällen Systemsequenzdiagramme und Operationsverträge ableiten und können deren Rolle im Software-Entwicklungsprozess beschreiben.

Software-Architektur: Die Studierenden können die Definition von Software-Architektur und Software-Komponenten wiedergeben und erläutern. Sie können den Unterschied zwischen Software-Architektur und Software-Architektur-Dokumentation erläutern. Sie können die Vorteile expliziter Architektur und die Einflussfaktoren auf Architekturentscheidungen beschreiben. Sie können Entwurfsentscheidungen und -elemente den Schichten einer Architektur zuordnen. Sie können beschreiben, was Komponentenmodelle definieren. Sie können die Bestandteile des Palladio Komponentenmodells beschreiben und einige der getroffenen Entwurfsentscheidungen erörtern.

Enterprise Software Patterns: Die Studierenden können Unternehmensanwendungen charakterisieren und für eine beschriebene Anwendung entscheiden, welche Eigenschaften sie erfüllt. Sie kennen Muster für die Strukturierung der Domänenlogik, architekturelle Muster für den Datenzugriff und objektrelationale Strukturmuster. Sie können für ein Entwurfsproblem ein geeignetes Muster auswählen und die Auswahl anhand der Vor- und Nachteile der Muster begründen.

Software-Entwurf: Die Studierenden können die Verantwortlichkeiten, die sich aus Systemoperationen ergeben, den Klassen bzw. Objekten im objektorientierten Entwurf anhand der GRASP-Muster zuweisen und damit objektorientierte Software entwerfen.

Software-Qualität: Die Studierenden kennen die Prinzipien für gut lesbaren Programmcode, können Verletzungen dieser Prinzipien identifizieren und Vorschläge zur Lösung entwickeln.

Modellgetriebene Software-Entwicklung: Die Studierenden können die Ziele und die idealisierte Arbeitsteilung der modellgetriebenen Software-Entwicklung (MDSD) beschreiben und die Definitionen für Modell und Metamodell wiedergeben und erläutern. Sie können die Ziele der Modellierung diskutieren. Sie können die Model-driven Architecture beschreiben und Einschränkungen in der Object Constraint Language ausdrücken. Sie können einfache Transformationsfragmente von Modellzu-Text-Transformationen in einer Template-Sprache ausdrücken. Sie können die Vor- und Nachteile von MDSD abwägen.

Eingebettete Systeme: Die Studierenden können das Prinzip eines Realzeitsystems und warum diese für gewöhnlich als parallele Prozesse implementiert sind erläutern. Sie können einen groben Entwurfsprozess für Realzeitsysteme beschreiben. Sie können die Rolle eines Realzeitbetriebssystems beschreiben. Sie können verschiedene Klassen von Realzeitsystemen unterscheiden

Verlässlichkeit: Die Studierenden können die verschiedenen Dimensionen von Verlässlichkeit beschreiben und eine gegebene Anforderung einordnen. Sie können verdeutlichen, dass Unit Tests nicht ausreichen, um Software-Zuverlässigkeit zu bewerten, und können beschreiben, wie Nutzungsprofil und realistische Fehlerdaten einen Einfluss haben.

Domänen-getriebener Entwurf (DDD): Die Studierenden kennen die Entwurfsmetapher der allgegenwärtigen Sprache, der Abgeschlossenen Kontexte, und des Strategischen Entwurfs. Sie können eine Domäne anhand der DDD Konzepte, Entität, Wertobjekte, Dienste beschreiben, und das resultierende Domänenmodell durch die Muster der Aggregate, Fabriken, und Depots verbessern. Sie kennen die unterschiedlichen Arten der Interaktionen zwischen Abgeschlossenen Kontexten und können diese anwenden.

Sicherheit (i.S.v. Security): Die Studierenden können die Grundideen und Herausforderungen der Sicherheitsbewertung beschreiben. Sie können häufige Sicherheitsprobleme erkennen und Lösungsvorschläge machen.

Inhalt

Die Studierenden erlernen Vorgehensweisen und Techniken für systematische Softwareentwicklung, indem fortgeschrittene Themen der Softwaretechnik behandelt werden.

Themen sind Requirements Engineering, Softwareprozesse, Software-Qualität, Software-Architekturen, MDD, Enterprise Software Patterns, Software-Entwurf, Software-Wartbarkeit, Sicherheit, Verlässlichkeit (Dependability), eingebettete Software, Middleware, und Domänen-getriebener Entwurf.

Anmerkungen

Das Modul Softwaretechnik II ist ein Stammmodul.

Arbeitsaufwand

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:

(4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS

Empfehlungen

Siehe Teilleistung

4.37 Modul: Teamprojekt [M-INFO-105153]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-110418	Teamprojekt	4 LP	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Man muss Programmieren *oder* SWT I (oder beides) bestanden haben, um am Teamprojekt teilnehmen zu können.

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

- 1. Das Modul M-INFO-101174 Programmieren muss begonnen worden sein.
- 2. Das Modul M-INFO-101175 Softwaretechnik I muss begonnen worden sein.

Qualifikationsziele

Studierenden können nach dem Teamprojekt kleinere Softwareprojekte nach dem Stand der Softwaretechnik im Team realisieren.

Lernziele sind inbesondere

- der Einsatz von Verfahren des objektorientierten Software-Entwurfs,
- die Anwendung/Umsetzen von Implementierungskompetenz, und
- die Praktische Umsetzung von Qualitätssicherung, und
- die arbeitsteilige Kooperation im Team.

Erfolgreiche Teilnehmer können die Anforderungen an ein Softwaresystem angemessen dokumentieren (Pflichtenheft mit GUI-Beispielen und Testfallszenarien) und dabei zwischen Muss- und Wunschfunktionalität differenzieren.

Sie beherrschen objektorientierten Entwurf mit UML, insbesondere von Klassen- und Sequenzdiagrammen und setzen dabei gängige OOP-Entwurfsmuster konsequent und korrekt ein.

Sie können eine geplante Systemarchitektur angemessen darstellen, dokumentieren und sie anhand softwaretechnischer Kriterien begründen.

Erfolgreiche Teilnehmer sind in der Lage, geeignete Entwicklungswerkzeuge (IDE, Versionsverwaltung, Bibliotheken) für ein zu entwickelndes System selbstständig auszuwählen.

Erfolgreiche Teilnehmer besitzen profunde praktische Kenntnisse einer objektorientierten Sprache (vgl. Veranstaltung "Programmieren") und beherrschen damit die Implementierung eines Softwareentwurfs.

Sie können konkrete Techniken zur Qualitätssicherung auf ihre Implementierung anwenden: Sie können ihr System mittels Komponententest, Überdeckungstests und Integrationstests kritischer Komponenten validieren.

Sie können Systemanforderungen bewerten und ggf. den Entwurf nachträglich anpassen. Sie können den Erfolg eines Projektes begründet bemessen und können Systemqualität anhand von Statistiken (u.a. Testfall-Überdeckungsmaße und Analysen gefundener Fehler im Qualitätssicherungsdokument) bewerten.

Sie beherrschen die Zusammenarbeit im Team durch geeignete Kommunikation, Synchronisation, kennen Hilfsmittel des Team und können auch Leitungsaufgaben übernehmen.

Inhalt

- · Anwendung der im Modul Softwaretechnik erlernten Techniken in der Praxis anhand eines kleinen Softwareprojekts.
- · Didaktisch informierter Software-Entwurf in Verwebung mit dem Modul Fachdidaktik 2.
- Im Verlauf des Teamprojekts erstellen die Studierenden in Zusammenarbeit im Team folgende Artefakte:
 - Pflichtenheft
 - Software-Entwurfs-Dokumentation
 - Implementierung
 - · Qualtitätsicherung-Report

Anmerkungen

Das Modul muss zusammen mit dem Modul Fachdidaktik II belegt und geprüft werden.

Arbeitsaufwand

15h Anforderungsanalyse und Pflichtenheft30h Entwurf und Dokumentation30h Implementierung15h Qualitätssicherung

= 90h = 3 ECTS

Dies schließt die Präsenzzeiten im Rahmen wöchentlicher Treffen mit den Betreuern ein.

Die Einbettung in ein Unterrichtskonzept ist Bestandteil der Veranstaltung Fachdidaktik 2.

4.38 Modul: Telematik [M-INFO-100801]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Stammmodul)
Wissenschaftliches Fach Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
4Version
4

Pflichtbestandteile			
T-INFO-101338	Telematik	6 LP	Zitterbart

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Studierende

- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Wegewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- · kennen Möglichkeiten zur Verwaltung und Administration von Netzen.

Studierende beherrschen die grundlegenden Protokollmechanismen zur Etablierung zuverlässiger Ende-zu-Ende-Kommunikation. Studierende besitzen detailliertes Wissen über die bei TCP verwendeten Mechanismen zur Stau- und Flusskontrolle und können die Problematik der Fairness bei mehreren parallelen Transportströmen erörtern. Studierende können die Leistung von Transportprotokollen analytisch bestimmen und kennen Verfahren zur Erfüllung besonderer Rahmenbedingungen mit TCP, wie z.B. hohe Datenraten und kurze Latenzen. Studierende sind mit aktuellen Themen, wie der Problematik von Middleboxen im Internet, dem Einsatz von TCP in Datacentern und Multipath-TCP, vertraut. Studierende können Transportprotokolle in der Praxis verwenden und kennen praktische Möglichkeiten zu Überwindung der Heterogenität bei der Entwicklung verteilter Anwendungen, z.B. mithilfe von ASN.1 und BER.

Studierende kennen die Funktionen von Routern im Internet und können gängige Routing-Algorithmen wiedergeben und anwenden. Studierende können die Architektur eines Routers wiedergeben und kennen verschiedene Ansätze zur Platzierung von Puffern sowie deren Vor- und Nachteile. Studierende verstehen die Aufteilung von Routing-Protokolle in Interior und Exterior Gateway Protokolle und besitzen detaillierte Kenntnisse über die Funktionalität und die Eigenschaften von gängigen Protokollen wie RIP, OSPF und BGP. Die Studierenden sind mit aktuellen Themen wie IPv6 und SDN vertraut.

Studierende kennen die Funktion von Medienzuteilung und können Medienzuteilungsverfahren klassifizieren und analytisch bewerten. Studierende besitzen vertiefte Kenntnisse zu Ethernet und kennen verschiedene Ethernet-Ausprägungen und deren Unterschiede, insbesondere auch aktuelle Entwicklungen wie Echtzeit-Ethernet und Datacenter-Ethernet. Studierende können das Spanning-Tree-Protocol wiedergeben und anwenden. Studierende kennen die grundlegende Funktionsweise der Hilfsprotokolle LLC und PPP.

Studierende kennen die physikalischen Grundlagen, die bei dem Entwurf und die Bewertung von digitalen Leitungscodes relevant sind. Studierende können verbreitete Kodierungen anwenden und kennen deren Eigenschaften.

Studierende kennen die Architektur von ISDN und können insbesondere die Besonderheiten beim Aufbau des ISDN-Teilnehmeranschlusses wiedergeben. Studierende besitzen grundlegende Kenntnisse über das weltweite Telefonnetz SS7. Studierende können die technischen Besonderheiten von DSL wiedergeben. Studierende sind mit dem Konzept des Label Switching vertraut und können existierende Ansätze wie ATM und MPLS miteinander vergleichen. Studierende sind mit den grundlegenden Herausforderungen bei dem Entwurf optischer Transportnetze vertraut und kennen die grundlegenden Techniken, die bei SDH und DWDM angewendet werden.

Inhalt

- Einführung
- Ende-zu-Ende Datentransport
- Routingprotokolle und -architekturen
- Medienzuteilung
- Brücken
- Datenübertragung
- ISDN
- Weitere ausgewählte Beispiele
- Netzmanagement

Arbeitsaufwand

Vorlesung mit 3 SWS plus Nachbereitung/Prüfungsvorbereitung, 6 LP.

6 LP entspricht ca. 180 Arbeitsstunden, davon

ca. 60 Std. Vorlesungsbesuch

ca. 60 Std. Vor-/Nachbereitung

ca. 60 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung

4.39 Modul: Theoretische Grundlagen der Informatik [M-INFO-101172]

Verantwortung: Prof. Dr.-Ing. Marvin Künnemann

Dr. rer. nat. Torsten Ueckerdt

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wissenschaftliches Fach Informatik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-INFO-103235	Theoretische Grundlagen der Informatik	6 LP	Künnemann, Ueckerdt

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende besitzt einen vertieften Einblick in die Grundlagen der Theoretischen Informatik und hat grundlegende Kenntnis in den Bereichen Bereichenbarkeitstheorie, Komplexitätstheorie, formale Sprachen und Informationstheorie. Er/sie kann die Beziehungen dieser Gebiete erörtern und in einen Gesamtzusammenhang bringen. Außerdem kennt er/sie die fundamentalen Definitionen und Aussagen aus diesen Bereichen und ist in der Lage geführte Beweise zu verstehen sowie Wissen über erlangte Beweistechniken auf ähnliche Probleme anzuwenden.

Er/sie versteht die Grenzen und Möglichkeiten der Informatik in Bezug auf die Lösung von definierbaren aber nur bedingt berechenbare Probleme. Hierzu beherrscht er verschiedene Berechnungsmodelle, wie die der Turingmaschine, des Kellerautomaten und des endlichen

Automaten. Er/sie kann deterministische von nicht-deterministischen Modellen unterscheiden und deren Mächtigkeit gegeneinander abschätzen. Der/die Studierende kann die Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (z.B. Halteproblem) und Gödels Unvollständigkeitssatz erläutern.

Er/sie besitzt einen Überblick über die wichtigsten Klassen der Komplexitätstheorie. Darüber hinaus kann er/sie ausgewählte Probleme mittels formaler Beweisführung in die ihm/ihr bekannten Komplexitätsklassen zuordnen. Insbesondere kennt er/sie die Komplexitätsklassen P und NP sowie das Konzept NP-vollständiger Probleme (polynomielle Reduktion). Er/sie kann erste grundlegende Techniken anwenden, um NP-schwere Probleme zu analysieren. Diese

Techniken umfassen unter anderem polynomielle Näherungsverfahren (Approximationsalgorithmen mit absoluter/relativer Güte, Approximationsschemata) als auch exakte Verfahren (Ganzzahlige Programme).

Im Bereich der formalen Sprachen ist es ihm/ihr möglich Sprachen als Grammatiken zu formulieren und diese in die Chomsky-Hierarchie einzuordnen. Zudem kann er/sie die ihm/ihr bekannten Berechnungsmodelle den

einzelnen Typen der Chomsky-Hierarchie zuordnen, sodass er/sie die Zusammenhänge zwischen formalen Sprachen und Berechnungstheorie identifizieren kann.

Der/die Studierende besitzt einen grundlegenden Überblick über die Informationstheorie und kennt damit Entropie, Kodierungsschemata sowie eine formale Definition für Information. Er/sie besitzt zudem die Fähigkeit dieses Wissen anzuwenden.

Inhalt

Es gibt wichtige Probleme, deren Lösung sich zwar klar definieren läßt aber die man niemals wird systematisch berechnen können. Andere Probleme lassen sich "vermutlich" nur durch systematisches Ausprobieren lösen. Die meisten Ergebnisse dieser Vorlesung werden rigoros bewiesen. Die dabei erlernten Beweistechniken sind wichtig für die Spezifikation von Systemen der Informatik und für den systematischen Entwurf von Programmen und Algorithmen.

Das Modul gibt einen vertieften Einblick in die Grundlagen und Methoden der Theoretischen Informatik. Insbesondere wird dabei eingegangen auf grundlegende Eigenschaften Formaler Sprachen als Grundlagen von Programmiersprachen und Kommunikationsprotokollen (regulär, kontextfrei, Chomsky-Hierarchie), Maschinenmodelle (endliche Automaten, Kellerautomaten, Turingmaschinen, Nichtdeterminismus, Bezug zu Familien formaler Sprachen), Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (Halteproblem,...), Gödels Unvollständigkeitssatz und Einführung in die Komplexitätstheorie (NP-vollständige Probleme und polynomiale Reduktionen).

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

5 Teilleistungen

5.1 Teilleistung: Access Control Systems: Models and Technology [T-INFO-112775]

Verantwortung: Prof. Dr. Hannes Hartenstein **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106303 - Access Control Systems: Models and Technology

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrverans	staltungen				
SS 2024	2400147	Access Control Systems: Models and Technology	3 SWS	Vorlesung / Übung (VÜ) / ⊈ ∗	Hartenstein, Leinweber

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

The assessment is carried out as a written examination (§ 4 Abs. 2 Nr. 1 SPO) lasting 60 minutes.

Depending on the number of participants, it will be announced six weeks before the examination (§ 6 Abs. 3 SPO) whether the examination takes place

- in the form of an oral examination lasting 20 minutes pursuant to § 4 Abs. 2 Nr. 2 SPO or
- in the form of a written examination lasting 60 minutes in accordance with § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106061 - Access Control Systems: Foundations and Practice darf nicht begonnen worden sein.

Empfehlungen

Basics according to the lectures "IT Security Management for Networked Systems" and "Telematics" are recommended.

5.2 Teilleistung: Algorithmen I [T-INFO-100001]

Verantwortung: TT-Prof. Dr. Thomas Bläsius
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100030 - Algorithmen I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrverans	taltungen			
SS 2024	24500	Algorithmen I	4 SWS	 Bläsius, Wilhelm, Yi, von der Heydt

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Abschlussprüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 120 Minuten.

Der Dozent kann für gute Leistungen in der <u>Übung</u> zur Lehrveranstaltung *Algorithmen I* einen Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben.

Dieser Notenbonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

5.3 Teilleistung: Algorithmen II [T-INFO-102020]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101173 - Algorithmen II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24079	Algorithmen II	4 SWS	Vorlesung (V) / 🗣	Sanders, Laupichler, Maas

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

5.4 Teilleistung: Ausgewählte Themen [T-INFO-110417]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105151 - Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrverans	staltungen				
WS 23/24		Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme	3 SWS	Vorlesung / Übung (VÜ) / ⊈ ⁵	Hartenstein, Leinweber

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Ausgewählte Themen:

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-109125 - Fortgeschrittene Themen darf nicht begonnen worden sein.

Empfehlungen

Kenntnisse zu Grundlagen aus Mathematik, Programmierung und Rechnernetzen sind hilfreich.

Anmerkungen

Für den Teil "Programmierparadigmen" sind die ersten fünf Veranstaltungen der Vorlesung "Programmierparadigmen" und die ersten drei Veranstaltungen der Übung "Programmierparadigmen" bei Prof. Snelting zu besuchen. Informationen zur Organisation der Lehrveranstaltung entnehmen Sie bitte den Internetseiten der Forschungsgruppe Dezentrale Systeme und Netzdienste von Prof. Hartenstein.

5.5 Teilleistung: Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung [T-INFO-105983]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101219 - Basispraktikum TI: Hardwarenaher Systementwurf

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version

Erfolgskontrolle(n)

Es muss außerdem einen Übungsschein in Form einer Studienleistung nach § 4 Abs. 3 SPO erbracht werden. Hierfür wird die Abgabe zweier Übungsblätter bewertet.

Voraussetzungen

Keine.

5.6 Teilleistung: Basispraktikum TI: Hardwarenaher Systementwurf [T-INFO-102011]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101219 - Basispraktikum TI: Hardwarenaher Systementwurf

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2424309	Basispraktikum TI: Hardwarenaher Systementwurf	4 SWS	Praktikum (P)	Nassar, Bauer, Henkel
SS 2024	2424309	Basispraktikum TI: Hardwarenaher Systementwurf	4 SWS	Praktikum (P)	Nassar, Henkel, Demirdag

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen

Keine.

Empfehlungen

Besuch der Veranstaltungen:

- Rechnerorganisation

und/oder

-Digitaltechnik und Entwurfsverfahren

5.7 Teilleistung: Betriebssysteme [T-INFO-101969]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101177 - Betriebssysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrverans	staltungen				
WS 23/24	2424009	Betriebssysteme	4 SWS	Vorlesung (V) / 🗣	Bellosa, Maucher, Werling

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Anmerkungen

Studierende, die das Modul bis inkl. SS 2019 begonnen (bereits die Haupt- oder Scheinklasur angetreten haben) und noch nicht abgeschlossen haben, erhalten die Möglichkeit die zwei Prüfungen aus dem Modul im WS 2019 / 2020 erneut abzulegen oder auf die neue Version des Moduls mit der neuen Erfolgskontrolle zu wechseln. Hierzu müssen Studierende eine E-Mail an beratung-informatik@informatik.kit.edu senden.

5.8 Teilleistung: Computergrafik [T-INFO-101393]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100856 - Computergrafik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24081	Computergrafik	4 SWS	Vorlesung (V) / 🗣	Dachsbacher, Bretl

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Zu Vorlesungsbeginn wird bekanntgegeben, ob durch erfolgreiche Bearbeitung von Praxisaufgaben Bonuspunkte erworben werden können. Es wird ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben. Der erlangte Notenbonus wird auf eine bestandene schriftliche Prüfung (Klausur) im gleichen Semester angerechnet. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

5.9 Teilleistung: Datenbanksysteme [T-INFO-101497]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-104921 - Datenbanksysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2024	24516	Datenbanksysteme	2 SWS	Vorlesung (V) / 🗣	Böhm
SS 2024	24522	Übungen zu Datenbanksysteme	1 SWS	Übung (Ü) / 🗣	Böhm, Kalinke

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden, wenn der Dozent diese Möglichkeit im jeweiligen Semester anbietet. In diesem Fall werden die genauen Kriterien für die Vergabe des Bonus zu Vorlesungsbeginn bekannt gegeben.

Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4)

Sofern die Vergabe des Bonus erteilt wurde, gilt dieser für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

5.10 Teilleistung: Datenschutz von Anonymisierung bis Zugriffskontrolle [T-INFO-108377]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-104045 - Datenschutz von Anonymisierung bis Zugriffskontrolle

Teilleistungsart Prüfungsleistung schriftlich

Leistungspunkte

Notenskala Drittelnoten Turnus Unregelmäßig Version 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Grundkenntnisse zu Datenbanken, verteilten Informationssystemen, Systemarchitekturen und Kommunikationsinfrastrukturen, z.B. aus der Vorlesung Datenbanksysteme

5.11 Teilleistung: Digitale Barrierefreiheit und Assistive Technologien [T-INFO-111830]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105882 - Digitale Barrierefreiheit und Assistive Technologien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	2400165	Digitale Barrierefreiheit und Assistive Technologien	2 SWS	Vorlesung (V) / 🗣	Stiefelhagen, Schwarz

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

T-INFO-101301 Barrierefreiheit - Assistive Technologien für Sehgeschädigtedarf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-101301 - Barrierefreiheit - Assistive Technologien für Sehgeschädigte darf nicht begonnen worden sein.

5.12 Teilleistung: Digitaltechnik und Entwurfsverfahren [T-INFO-103469]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-102978 - Digitaltechnik und Entwurfsverfahren

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	24007	Digitaltechnik und Entwurfsverfahren	3 SWS	Vorlesung (V) / 🗣	Hanebeck

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Die Modulnote ist die Note der Klausur.

Durch die Bearbeitung von Übungsblättern kann ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) erreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

5.13 Teilleistung: Echtzeitsysteme [T-INFO-101340]

Verantwortung: Prof. Dr.-Ing. Thomas Längle **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100803 - Echtzeitsysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	24576	Echtzeitsysteme	4 SWS	Vorlesung / Übung (VÜ) / ⊈	Längle, Ledermann

Legende: █ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten gemaß § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Der vorherige Abschluss der Module Grundbegriffe der Informatik und Programmieren wird empfohlen.

5.14 Teilleistung: Einführung in Rechnernetze [T-INFO-102015]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103455 - Einführung in Rechnernetze

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	24519	Einführung in Rechnernetze	2 SWS	Vorlesung (V) / 🗣	Kopmann, Neumeister, Schneider, Zitterbart
SS 2024	24521	Übung zu Einführung in Rechnernetze	1 SWS	Übung (Ü) / 🗣	Kopmann, Neumeister, Schneider, Zitterbart

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Keine.

5.15 Teilleistung: Fachdidaktik II [T-INFO-106280]

Verantwortung: Prof. Dr. Bernhard Beckert

Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103156 - Fachdidaktik II
Voraussetzung für: T-INFO-109614 - Fachdidaktik III

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version 2

Lehrverans	staltungen				
WS 23/24	2400038	Fachdidaktik Informatik II	SWS	Vorlesung (V)	Kohn

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Es findet eine Modulübergreifende Prüfung mit dem Modul Teamprojekt.

Voraussetzungen

FD'

Das Modul muss gleichzeitig mit dem Modul Teamprojekt belegt und geprüft werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106234 - Fachdidaktik Informatik I muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Programmierkenntnisse in Java sind erforderlich

5.16 Teilleistung: Fachdidaktik III [T-INFO-109614]

Verantwortung: Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-104717 - Fachdidaktik III

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2024	2400233	Fachdidaktik Informatik III	4 SWS	Vorlesung (V) / 🗣	Beckert, Zand
SS 2024	2400234	Fachdidaktik Informatik III	4 SWS	Vorlesung (V) / 🗣	Kohn, Zand

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Es müssen zwei schriftliche Ausarbeitungen im Umfang von je ca. 5-10 Seiten erstellt und eine ca. 15-minütige Präsentation gehalten werden.

Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen

FD2

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106280 - Fachdidaktik II muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Programmierkenntnisse in Java sind erforderlich

5.17 Teilleistung: Fachdidaktik Informatik I [T-INFO-106234]

Verantwortung: Prof. Dr. Bernhard Beckert

Dirk Zechnall

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103133 - Fachdidaktik Informatik I

Voraussetzung für: T-INFO-106280 - Fachdidaktik II

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten **Turnus**Jedes Sommersemester

Version 2

Lehrverans	staltungen				
SS 2024	2400021	Fachdidaktik Informatik I	3 SWS	Vorlesung (V) / 🗣	Kohn

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen

Keine.

Empfehlungen

Programmierkenntnisse in Java sind hilfreich.

5.18 Teilleistung: Formale Systeme [T-INFO-101336]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100799 - Formale Systeme

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 23/24	24086	Formale Systeme	4 SWS	Vorlesung / Übung (VÜ)	Beckert, Ulbrich, Weigl

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.

Zusätzlich werden Zwischentests und Praxisaufgaben angeboten, für die ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine *bestandene* schriftliche Prüfung (Klausur) im gleichen Semester angerechnet. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

Der erfolgreiche Abschluss des Moduls Theoretische Grundlagen der Informatik wird empfohlen.

5.19 Teilleistung: Fortgeschrittene Künstliche Intelligenz [T-INFO-112768]

Verantwortung: Prof. Dr. Jan Niehues **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106299 - Fortgeschrittene Künstliche Intelligenz

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	2400141	Fortgeschrittene Künstliche Intelligenz	4 SWS	Vorlesung (V) / 🗣	Niehues, Asfour

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

5.20 Teilleistung: Funktionale Programmierung [T-INFO-109126]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105151 - Ausgewählte Themen für das Informatik-Lehramt: Gesellschaft, Menschen, Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	2	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24030	Programmierparadigmen	3 SWS	Vorlesung (V) / ♀	Snelting, Reussner

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Programmierparadigmen: Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine.

Empfehlungen

Kenntnisse zu Grundlagen aus Mathematik, Programmierung und Rechnernetzen sind hilfreich.

Anmerkungen

Für den Teil "Programmierparadigmen" sind die ersten fünf Veranstaltungen der Vorlesung "Programmierparadigmen" und die ersten drei Veranstaltungen der Übung "Programmierparadigmen" bei Prof. Snelting zu besuchen. Informationen zur Organisation der Lehrveranstaltung entnehmen Sie bitte den Internetseiten der Forschungsgruppe Dezentrale Systeme und Netzdienste von Prof. Hartenstein.

5.21 Teilleistung: Grundbegriffe der Informatik [T-INFO-101964]

Verantwortung: Dr. rer. nat. Mattias Ulbrich **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24001	Grundbegriffe der Informatik	3 SWS	Vorlesung (V) / 🗣	Ulbrich, Kern, Lanzinger

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von i.d.R. zwei Stunden.

Anmerkungen

Achtung: Diese Teilleistung ist für den Bachelor Studiengang der Informatik, Informatik Lehramt und Informationswirtschaft Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO.Die Prüfung ist bis zum Ende des 2. Fachsemesters anzutreten und bis zum Ende des 3. Fachsemesters zu bestehen.

5.22 Teilleistung: Grundbegriffe der Informatik Übungsschein [T-INFO-101965]

Verantwortung: Dr. rer. nat. Mattias Ulbrich **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24002	Übungen zu Grundbegriffe der Informatik	1 SWS	Übung (Ü) / ♀ ⁵	Ulbrich, Kern

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Anmerkungen

Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik. Die Prüfung ist bis zum Ende des 2. Fachsemesters anzutreten und bis zum Ende des 3. Fachsemesters zu bestehen.

Der Übungsschein ist für die Studiengänge Geodäsie, Physik und Mathematik nicht verpflichtend.

5.23 Teilleistung: Grundlagen der Künstlichen Intelligenz [T-INFO-112194]

Verantwortung: TT-Prof. Dr. Pascal Friederich

Prof. Dr. Gerhard Neumann

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106014 - Grundlagen der Künstlichen Intelligenz

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	6

Lehrverans	staltungen				
WS 23/24	2400158	Grundlagen der künstlichen Intelligenz	3 SWS	Vorlesung / Übung (VÜ) / ♀	Neumann, Friederich

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min) nach § 4 Abs. 2 Nr. 1 SPO erfolgen.

Voraussetzungen

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-101356 - Kognitive Systeme darf nicht begonnen worden sein.

Empfehlungen

LA II

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik wird dringend empfohlen.

5.24 Teilleistung: Heterogene parallele Rechensysteme [T-INFO-101359]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100822 - Heterogene parallele Rechensysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	2424117	Heterogene parallele Rechensysteme	2 SWS	Vorlesung (V) / 🗣	Karl

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

5.25 Teilleistung: Informationssicherheit [T-INFO-112195]

Verantwortung: Prof. Dr. Jörn Müller-Quade **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106015 - Informationssicherheit

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2024	2400199	Informationssicherheit	3 SWS	Vorlesung / Übung (VÜ)	Müller-Quade, Strufe, Hartenstein, Wressnegger	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von 90 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-101371 - Sicherheit darf nicht begonnen worden sein.

Empfehlungen

Vorkenntnisse aus Theoretische Grundlagen der Informatik und Betriebssysteme werden dringend empfohlen.

5.26 Teilleistung: Internet of Everything [T-INFO-101337]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100800 - Internet of Everything

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24104	Internet of Everything	2 SWS	Vorlesung (V) / 🗣	Zitterbart, Mahrt, Neumeister

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO.

Bei unvertretbar hohem Prüfungsaufwand wird eine schriftliche Prüfung im Umfang von ca. 60 Minuten anstatt einer mündlichen Prüfung angeboten. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

5.27 Teilleistung: IT-Sicherheit [T-INFO-112818]

Verantwortung: Prof. Dr. Hannes Hartenstein

Prof. Dr. Jörn Müller-Quade Prof. Dr. Thorsten Strufe

TT-Prof. Dr. Christian Wressnegger

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-106315 - IT-Sicherheit

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 23/24	2400010	IT-Sicherheit	4 SWS	Vorlesung / Übung (VÜ) / ⊈	Müller-Quade, Strufe, Wressnegger, Hartenstein

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von 90 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Der Stoff der Pflichtvorlesung Informationssicherheit wird vorausgesetzt

5.28 Teilleistung: Masterarbeit - Informatik [T-INFO-109822]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-104807 - Modul Masterarbeit - Informatik

Teilleistungsart
AbschlussarbeitLeistungspunkte
15Notenskala
DrittelnotenTurnus
Jedes SemesterVersion
1

Erfolgskontrolle(n)

Die Masterarbeit ist in § 14 der SPO Master Lehramt Informatik geregelt. Die Präsentation soll spätestens vier Wochen nach der Abgabe der Masterarbeit stattfinden.

Die Bewertung der Masterarbeit erfolgt in Form eines Gutachtens. Es ist eine Gesamtbewertung (inkl. über die Präsentation) zu verfassen.

Voraussetzungen

Für die Zulassung zur Masterarbeit müssen mindestens 65 LP im Teilstudiengang **Informatik** erbracht worden sein. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Voraussetzung für die Anmeldung zur letzten Modulprüfung der Masterprüfung ist die Bescheinigung über das erfolgreich abgeleistete Schulpraxissemester gemäß § 14 a. In Ausnahmefällen, die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen. (§ 19 a SPO)

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 6 Monate

Maximale Verlängerungsfrist 3 Monate

Korrekturfrist 8 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

5.29 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	2

Lehrverans	staltungen				
SS 2024	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 💢	Beigl, Lee

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106257 - Übungsschein Mensch-Maschine-Interaktion muss erfolgreich abgeschlossen worden sein.

5.30 Teilleistung: Mikroprozessoren I [T-INFO-101972]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101183 - Mikroprozessoren I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	2424688	Mikroprozessoren I	2 SWS	Vorlesung (V) / 🗣	Karl

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. etwa 30 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

5.31 Teilleistung: Programmieren [T-INFO-101531]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Woraussetzung für: M-INFO-101174 - Programmieren
T-INFO-106281 - Teamprojekt
T-INFO-110418 - Teamprojekt

Teilleistungsart Prüfungsleistung anderer Art

Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version

Lehrveranstaltungen					
WS 23/24	24004	Programmieren	4 SWS	Vorlesung / Übung (VÜ)	Heinrich
SS 2024	2400083	Übung zu Programmieren	0 SWS	Übung (Ü) / 🗣	Koziolek

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO Informatik und besteht aus zwei Abschlussaufgaben, die zeitlich getrennt voneinander abgegeben werden.

Eine Abmeldung ist nur innerhalb von zwei Wochen nach Bekanntgabe der ersten Aufgabe möglich.

Voraussetzungen

Der Übungsschein muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Die Teilleistung T-INFO-101967 - Programmieren Übungsschein muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Vorkenntnisse in Java-Programmierung können hilfreich sein, werden aber nicht vorausgesetzt.

Anmerkungen

Im Falle einer Wiederholung der Prüfung müssen beide Aufgaben erneut abgegeben werden.

Zwei Wochen nach Bekanntgabe der ersten Programmieraufgabe ist der Rücktritt von der Prüfung ohne triftigen Grund nicht mehr möglich.

Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.

5.32 Teilleistung: Programmieren Übungsschein [T-INFO-101967]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101174 - Programmieren **Voraussetzung für:** T-INFO-101531 - Programmieren

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Semester	1

Lehrveranstaltungen					
WS 23/24	24004	Programmieren	4 SWS	Vorlesung / Übung (VÜ)	Heinrich
SS 2024	2400083	Übung zu Programmieren	0 SWS	Übung (Ü) / 🗣	Koziolek

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO Informatik. Es muss ein Übungsschein erworben werden. Um die Studienleistung zu bestehen, müssen 50% der Punkte durch die Ausarbeitung der Übungsblätter erreicht werden und die Präsenzübung muss bestanden werden.

Wenn keine 50% der Punkte durch die Ausarbeitung der Übungsblätter erreicht werden, gilt der Übungsschein als nicht bestanden. Wenn die Präsenzübung nicht bestanden wird, gilt der Übungsschein als nicht bestanden.

Die Präsenzübung findet i.d.R. in der 2. Hälfte des Semesters statt. Die Präsenzübung soll zeigen, dass Studierende die bereits in den Übungsblättern erarbeiteten Studieninhalte beherrschen und ohne Hilfsmittel einsetzen können.

Voraussetzungen

keine

Anmerkungen

- Der Übungsschein ist Voraussetzung für die Teilnahme an der Prüfung Programmieren.
- Mit der Anmeldung zum Übungsschein erfolgt automatisch auch die Anmeldung zu der Präsenzübung. Nimmt der Studierende nicht an der Präsenzübung teil oder besteht er diese nicht, gilt der Übungsschein als nicht bestanden. In diesem Fall müssen im kommenden Semester sowohl die Ausarbeitung der Übungsblätter, als auch die Präsenzübung erfolgreich wiederholt werden.
- Wer die Ausarbeitung der Übungsblätter erfolgreich besteht, jedoch aus nicht zu vertretendem Grund an der Präsenzübung nicht teilnimmt, kann im nächsten Semester nur an der Präsenzübung teilnehmen. Wenn die Präsenzübung im nächsten Semester nicht bestanden wird, gilt der Übungsschein als nicht bestanden.
- Studierende, die an den Übungsschein bereits vor WS 16/17 ohne Erfolg teilgenommen haben, müssen an der Präsenzübung nicht teilnehmen.
- Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.

5.33 Teilleistung: Proseminar [T-INFO-101971]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101181 - Proseminar

TeilleistungsartPrüfungsleistung anderer Art

Leistungspunkte 3

Notenskala Drittelnoten **Turnus** Jedes Semester Version 1

Lehrverans	staltungen				
WS 23/24	2400041	Proseminar Algorithmen für Computerspiele	2 SWS	Proseminar / Seminar (PS) / 🗣	Schüßler
WS 23/24	2400045	Windows Internals (Operating System Internals)	2 SWS	Proseminar (PS) /	Bellosa, Gröninger
WS 23/24	2400056	Proseminar: Data Sovereignty	2 SWS	Proseminar (PS) / 🗣	Hartenstein, Droll, Grundmann, Stengele
WS 23/24	2400057	Linux Internals Proseminar	2 SWS	Proseminar (PS) / 🗣	Bellosa, Werling
WS 23/24	2400066	Proseminar Softwaretechnik: Herausragende Persönlichkeiten der Informatik	2 SWS	Proseminar (PS) / 🗣	Schaefer
WS 23/24	2400085	Proseminar Mobile Computing	2 SWS	Proseminar / Seminar (PS/S)	Beigl, Zhou
WS 23/24	2400096	Proseminar "Formal System Engineering"	2 SWS	Proseminar (PS) / 🗣	Beckert, Weigl
WS 23/24	2400100	Ausgewählte Kapitel der Rechnerarchitektur	2 SWS	Proseminar (PS)	Karl, Hoffmann, Becker, Lehmann
WS 23/24	2400130	Post-Quantum Kryptographie	2 SWS	Proseminar (PS) /	Müller-Quade, Tiepelt, Ottenhues
WS 23/24	2400131	Proseminar Digitale Spiele und Player Experience	2 SWS	Proseminar (PS) /	Gerling
WS 23/24	2400133	Proseminar Virtuelle Realität und Barrierefreiheit	2 SWS	Proseminar (PS) /	Gerling
WS 23/24	2400139	Proseminar: Fortgeschrittene Themen des Maschinellen Lernens	SWS	Proseminar (PS) /	Friederich
WS 23/24	2400146	Künstliche Intelligenz in den Klima- und Umweltwissenschaften	2 SWS	Proseminar (PS) / 🗣	Nowack
WS 23/24	2400149	Proseminar Verarbeitung Natürlicher Sprache	2 SWS	Proseminar (PS) / 🗣	Niehues, Li
WS 23/24	2400152	Proseminar Geometrie in Kunst, Natur und Technik	sws	Proseminar (PS)	Prautzsch, Eifried
WS 23/24	2400154	Proseminar Moderne Kommunikationssysteme	2 SWS	Proseminar / Seminar (PS) / 🗣	Bless, Neumeister, Schneider, Zitterbart
WS 23/24	2400157	Proseminar: Motion Capture & biomechanische Bewegungsanalyse - Grundlagen und Anwendungen	2 SWS	Proseminar (PS) / 🗣	Mombaur
WS 23/24	2400172	Introduction to Human-Robot Interaction	2 SWS	Proseminar (PS) / 🗣	Bruno, Maure
WS 23/24	2400174	Proseminar: Artificial Intelligence for Energy Systems	SWS	Proseminar (PS) / 🗣	Schäfer
WS 23/24	2400177	KOPIE KI Systems Engineering	sws	Seminar (S) / ♀	Beigl, Riedel, Beyerer, Stiefelhagen
WS 23/24	2400178	Aggregating Information Requirements: The Google Books Ngram Corpus as a Tool for Research	SWS	Proseminar (PS) / 🗣	Böhm, Richter
WS 23/24	2400182	Proseminar: Introduction to Imitation Learning	2 SWS	Proseminar (PS) / 🗣	Lioutikov

WS 23/24	2400193	Proseminar: Moralische Autonome	2 SWS	Proseminar (PS) / 🗣	Schwammberger
WS 23/24	2400197	Agenten Proseminar Didaktik der Informatik	SWS 3 SWS	Proceedings (DC) /	Marguardt Kabis
WS 23/24 WS 23/24	2400197	Proseminar Didaktik der Informatik Proseminar: Novel advances in	SWS	Proseminar (PS) / • Proseminar (PS) / •	Marquardt, Kohn Böhm, Matteucci
VV3 23/24	2400201	Data Science	3003	Proseininai (PS) / 🗣	Bonn, Matteucci
WS 23/24	2400282	Smart Embedded Systems	2 SWS	Proseminar (PS) /	Gonzalez, Hussain, Pfeiffer, Sikal, Nassar, Ahmed, Khdr, Henkel
WS 23/24	24060	Proseminar Anthropomatik: Von der Theorie zur Anwendung	2 SWS	Proseminar (PS) / 🗣	Hanebeck, Beyerer, Reith-Braun
WS 23/24	24782	Proseminar Web-Anwendungen	2 SWS	Proseminar (PS) / 🗣	Abeck, Schneider, Sänger
SS 2024	2400010	Proseminar Mobile Computing	2 SWS	Proseminar (PS) /	Beigl, Riedel, Studt
SS 2024	2400020	Windows Internals (Proseminar Operating System Internals)	2 SWS	Proseminar (PS) / 🗣	Bellosa, Gröninger
SS 2024	2400026	Proseminar Netze und Punktwolken	2 SWS	Proseminar (PS) / 🗣	Eifried, Prautzsch
SS 2024	2400027	Essentials of Data Science (vorher Novel advances in Data Science)	SWS	Proseminar (PS) / 🗣	Böhm, Matteucci
SS 2024	2400070	Proseminar "Formale Methoden und Maschinelles Lernen" findet im SS 2024 nicht statt!	sws	Proseminar (PS) / 🗣	Beckert
SS 2024	2400075	Proseminar Software-Sustainability	2 SWS	Proseminar (PS) / 🗣	Reussner, Mirandola
SS 2024	2400076	Proseminar Software- Anforderungen und -Entwurf	2 SWS	Proseminar (PS) / 🗣	Koziolek
SS 2024	2400079	Proseminar: Designing and Conducting Experimental Studies	2 SWS	Proseminar (PS) /	Beigl
SS 2024	2400086	Proseminar Algorithmische Spieltheorie	2 SWS	Proseminar (PS) / 🗣	Ueckerdt, Göttlicher, Bläsius
SS 2024	2400105	Proseminar Softwaretechnik: Herausragende Persönlichkeiten der Informatik	2 SWS	Proseminar (PS) / 🗣	Schaefer
SS 2024	2400109	Quantum Information Theory	2 SWS	Proseminar (PS) /	Müller-Quade, Tiepelt, Ottenhues
SS 2024	2400121	Interactive Analytics Seminar	2 SWS	Proseminar / Seminar (PS/S) /	Beigl, Mädche
SS 2024	2400132	Proseminar Algorithm Engineering	2 SWS	Proseminar (PS) / 🗣	Sanders, Uhl, Seemaier, Schimek
SS 2024	2400142	Proseminar: Humanoide Roboter	2 SWS	Proseminar (PS) / 🗣	Mombaur
SS 2024	2400143	Proseminar Selbst-Erklärbarkeit von Software Systemen: Al trifft Theoretische Informatik	2 SWS	Proseminar (PS)	Schwammberger
SS 2024	2400166	Proseminar Künstliche Intelligenz in den Klima- und Umweltwissenschaften	2 SWS	Proseminar (PS) / 🗣	Nowack
SS 2024	2400167	Aggregating Information Requirements: The Google Books Ngram Corpus as a Tool for Research - findet nicht statt	SWS	Proseminar (PS) / 🗣	Böhm, Richter
SS 2024	2400169	Proseminar Differentiable Programming	2 SWS	Proseminar (PS) / 🗣	Platzer, Teuber, Abou El Wafa, Prebet
SS 2024	2400176	Linux Internals Proseminar	2 SWS	Proseminar (PS) / 🗣	Bellosa, Werling
SS 2024	2400179	Interpretierbarkeit und Kausalität im Maschinellen Lernen	2 SWS	Proseminar (PS) / 🗣	Stühmer
SS 2024	2400180	Robot Learning	2 SWS	Proseminar (PS) / 🗣	Lioutikov, Mattes
SS 2024	2400186	Proseminar Virtuelle Realität und Barrierefreiheit	2 SWS	Proseminar (PS) /	Gerling
SS 2024	2400189	Proseminar Moderne Kommunikationssysteme	2 SWS	Proseminar (PS) / 🗣	Zitterbart, Bless, Schneider

SS 2024	2400191	Proseminar Verarbeitung Natürlicher Sprache	2 SWS	Proseminar (PS) / 🗣	Niehues
SS 2024	2400197	Proseminar Didaktik der Informatik	3 SWS	Proseminar (PS) / 🗣	Kohn
SS 2024	2400201	Proseminar "Formal System Engineering"	2 SWS	Proseminar (PS) / 🗣	Beckert, Weigl
SS 2024	2400282	Smart Embedded Systems	2 SWS	Proseminar (PS) /	Gonzalez, Hussain, Pfeiffer, Sikal, Nassar, Khdr, Henkel, Balaskas, Ahmed, Demirdag
SS 2024	2424815	Ausgewählte Kapitel der Rechnerarchitektur	3 SWS	Proseminar (PS) /	Karl, Lehmann
SS 2024	2424900	Proseminar Computergrafik	2 SWS	Proseminar / Seminar (PS/S) / 🗣	Dolp
SS 2024	24544	Proseminar: Anthropomatik: Von der Theorie zur Anwendung	2 SWS	Proseminar (PS) / 🗣	Hanebeck, Beyerer, Walker

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Studierende müssen eine schriftliche Ausarbeitung im Umfang von ca. 10 Seiten abgeben und eine Präsentation im Umfang von ca. 30 Minuten mit anschließender Diskussion halten.

Bei der Benotung werden sowohl die schriftliche Arbeit als auch die Präsentation berücksichtigt.

Voraussetzungen

Keine.

Anmerkungen

Das Proseminar soll im 3. oder 4. Fachsemester belegt werden.

Es können nur Proseminare der KIT-Fakultät für Informatik belegt werden. Eine vollständige Auflistung ist dem Vorlesungsverzeichnis zu entnehmen.

5.34 Teilleistung: Rechnerorganisation [T-INFO-103531]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103179 - Rechnerorganisation

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrveranstaltungen					
WS 23/24	24502	Rechnerorganisation	3 SWS	Vorlesung (V)	Henkel, Lehmann
WS 23/24	24505	Übungen zu Rechnerorganisation	2 SWS	Übung (Ü)	Lehmann

Erfolgskontrolle(n)

Die Erfolgskontrolle dieses Moduls erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine

5.35 Teilleistung: Rechnerstrukturen [T-INFO-101355]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100818 - Rechnerstrukturen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrverans	staltungen				
SS 2024	2424570	Rechnerstrukturen	3 SWS	Vorlesung (V) / 🗣	Karl

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Abschluss des Moduls Technische Informatik wird empfohlen.

5.36 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

Voraussetzung für: T-INFO-113123 - Simulation and Optimization in Robotics and Biomechanics

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester1

Lehrverans	staltungen				
WS 23/24	2424152	Robotik I - Einführung in die Robotik	3/1 SWS	Vorlesung (V) / 🗣	Asfour

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

5.37 Teilleistung: Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte [T-INFO-104742]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-102374 - Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version 2

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten (in Abhängigkeit von Text und Bildern zw. 10-20 Seiten) einer schriftlichen Zusammenfassung der im Seminar geleisteten Arbeit sowie der Präsentation (Vortragsdauer: 20 min + 5 min Diskussion) derselbigen als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-111832 - Seminar: Digitale Barrierefreiheit und Assistive Technologien darf nicht begonnen worden sein.

Empfehlungen

keine

5.38 Teilleistung: Seminar: Digitale Barrierefreiheit und Assistive Technologien [T-INFO-111832]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105884 - Seminar: Digitale Barrierefreiheit und Assistive Technologien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
WS 23/24	2400129	Seminar Digitale Barrierefreiheit und Assistive Technologien	2 SWS	Seminar (S) / 😘	Stiefelhagen, Schwarz

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten (in Abhängigkeit von Text und Bildern zw. 10-20 Seiten) einer schriftlichen Zusammenfassung der im Seminar geleisteten Arbeit sowie der Präsentation (Vortragsdauer: 20 min + 5 min Diskussion) derselbigen als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-104742 - Seminar Barrierefreiheit - Assistive Technologien für Sehgeschädigte darf nicht begonnen worden sein.

Empfehlungen

keine

5.39 Teilleistung: Softwaretechnik I [T-INFO-101968]

Verantwortung: Prof. Dr.-Ing. Ina Schaefer **Einrichtung:** KIT-Fakultät für Informatik

Woraussetzung für: M-INFO-101175 - Softwaretechnik I
T-INFO-106281 - Teamprojekt
T-INFO-110418 - Teamprojekt

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 6 Notenskala Drittelnoten

TurnusJedes Sommersemester

Version

Lehrverans	staltungen				
SS 2024	24518	Softwaretechnik I	4 SWS	Vorlesung / Übung (VÜ) / ⊈	Schaefer, Eichhorn

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik im Umfang von i.d.R. 60 Minuten.

Voraussetzungen

Keine.

Empfehlungen

Das Modul Programmieren sollte abgeschlossen sein.

5.40 Teilleistung: Softwaretechnik I Übungsschein [T-INFO-101995]

Verantwortung: Prof. Dr.-Ing. Ina Schaefer **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101175 - Softwaretechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	24518	Softwaretechnik I	4 SWS	Vorlesung / Übung (VÜ) / ♀	Schaefer, Eichhorn

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Es muss ein unbenoteter Übungsschein als Erfolgskontrolle in Form einer Studienleistung nach § 4 Abs. 3 SPO Informatik erbracht werden.

Voraussetzungen

keine

Empfehlungen

Das Modul Programmieren sollte abgeschlossen sein.

5.41 Teilleistung: Softwaretechnik II [T-INFO-101370]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100833 - Softwaretechnik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24076	Softwaretechnik II	4 SWS	Vorlesung (V) / 🗣	Reussner

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Die Lehrveranstaltung Softwaretechnik I sollte bereits gehört worden sein.

5.42 Teilleistung: Teamprojekt [T-INFO-110418]

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-105153 - Teamprojekt

Teilleistungsart Leistungspunkte Prüfungsleistung anderer Art 4 Notenskala Turnus Version
Drittelnoten Jedes Wintersemester 1

Lehrveranstaltungen					
WS 23/24	2400141	Teamprojekt	2 SWS	Praktikum (P)	Beckert, Ulbrich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Die Teilnehmer erstellen ein Pflichtenheft von ca. 10 Seiten, ein Entwurfsmodell mit ca. 25 Klassen, eine validierte Implementierung mit ca. 3000 Zeilen Quelltext, eine Implementierungsdokumentation von ca. 15 Seiten und eine kurze Qualitätssicherungsdokumentation.

Zum Abschluss einer jeder Phase (Analyse, Entwurf, Umsetzung, Qualitätssicherung) stellt das Team seine Ergebnisse dieser Phase im Rahmen eines Kolloquiums vor.

Der Rücktritt vom Teamprojekt ist bis zwei Wochen nach Veranstaltungsbeginn möglich

Voraussetzungen

mind. eine der beiden Teilleistungen muss bestanden sein:

T-INFO-101531 (T-INFO-101967 Ü-Schein)

T-INFO-101968 (T-INFO-101995 Ü-Schein)

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

- 1. Die Teilleistung T-INFO-101531 Programmieren muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-INFO-101968 Softwaretechnik I muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Die zeitgleiche Teilnahme des Modul Fachdidaktik 2 wird empfohlen.

5.43 Teilleistung: Telematik [T-INFO-101338]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100801 - Telematik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24128	Telematik	3 SWS	Vorlesung (V) / 🗣	Zitterbart, Kopmann, Seehofer, Mahrt

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Bei unvertretbar hohem Prüfungsaufwand kann die Prüfungsmodalität geändert werden. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

- Inhalte der Vorlesung Einführung in Rechnernetze oder vergleichbarer Vorlesungen werden vorausgesetzt.
- Der Besuch des modulbegleitenden Basispraktikums Protokoll Engineering wird empfohlen.

5.44 Teilleistung: Theoretische Grundlagen der Informatik [T-INFO-103235]

Verantwortung: Prof. Dr.-Ing. Marvin Künnemann

Dr. rer. nat. Torsten Ueckerdt

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101172 - Theoretische Grundlagen der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 23/24	24005	Theoretische Grundlagen der Informatik	l	Vorlesung / Übung (VÜ) / ⊈	Ueckerdt, Feilhauer, Goetze

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Anmerkungen

5.45 Teilleistung: Übungen zu Computergrafik [T-INFO-104313]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100856 - Computergrafik

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen					
WS 23/24	24083	Übungen zu Computergrafik	sws	Vorlesung / Übung (VÜ)	Bretl, Dolp, Piochowiak

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO.

Für das Bestehen müssen regelmäßig Programmieraufgaben abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

5.46 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion Voraussetzung für: T-INFO-101266 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2024	2400095	Mensch-Maschine-Interaktion	1 SWS	Übung (Ü) / 🗯	Beigl, Lee
SS 2024	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 💢	Beigl, Lee

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.